XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaie M, Rezvani M, N. Shirazi A, Yousefi B. A distributed finite-time secondary average controller for voltage regulation and power sharing in AC microgrids. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :113-122
URL: http://jiaeee.com/article-1-1542-en.html
Islamic Azad University Noor Branch
Abstract:   (869 Views)
This paper proposes a proper hierarchical control strategy composed of a modified droop controller in primary level and a distributed finite-time average controller in secondary layer. The aim of this paper is to achieve precise active and reactive power sharing and frequency and voltage alignment in an islanded AC microgrid (MG). To do so, a typical AC MG is simulated in MATLAB/SIMULINK software, and the proposed method is modeled and implemented. In the simulated AC MG, the distributed generation (DG) units are photovoltaic (PV) systems. The obtained results illustrate that the proposed method appropriately shares active and reactive powers among presented DGs in various operational modes such as load change, increase or decrease in DGs’ output power as well as connection and disconnection of communication links. It also accurately  restores the frequency and voltages of DGs to their nominal values.
 
Full-Text [PDF 1662 kb]   (357 Downloads)    
Type of Article: Research | Subject: Power
Received: 2022/12/20 | Accepted: 2023/03/6 | Published: 2023/08/6

References
1. [1] Delghavi, M.B., Advanced Islanded Mode Control Of Microgrids, 2011.
2. [2] Dheer, D. K., Gupta, Y., Doolla, S., "A Self Adjusting Droop Control Strategy To Improve Reactive Power Sharing in Islanded Microgrid", IEEE Transactions on Sustainable Energy, Vol. 11, No. 3, pp. 1624-1635, 2019. [DOI:10.1109/TSTE.2019.2933144]
3. [3] Pham, X.H.T., "Power Sharing Strategy in Islanded Microgrids Using Improved Droop Control", Electric Power Systems Research, Vol. 180, pp. 106164, 2020. [DOI:10.1016/j.epsr.2019.106164]
4. [4] Kulkarni, S.V., Gaonkar, D. N., "Improved Droop Control Strategy for Parallel Connected Power Electronic Converter Based Distributed Generation Sources in an Islanded Microgrid", Electric Power Systems Research, Vol. 201, pp. 107531, 2021. [DOI:10.1016/j.epsr.2021.107531]
5. [5] حسامی نقشبندی، علی، حبیبی، فرشید، بیورانی، حسن. "طراحی یک کنترل‌کننده مقاوم برای پایداری ولتاژ یک ریزشبکه در حالات مختلف کاری". نشریه مهندسی برق و الکترونیک ایران، ۱۰ ، ۱، ۳۲-۲۳، ۱۳۹۲.
6. [6] Wu, X., Shen, C., Iravani, R., "Feasible Range And Optimal Value Of The Virtual Impedance For Droop-Based Control Of Microgrids", IEEE Transactions on Smart Grid, Vol. 8, No. 3, pp. 1242-1251, 2016. [DOI:10.1109/TSG.2016.2519454]
7. [7] Fani, B., Zandi, F., & Karami-Horestani, A., "An Enhanced Decentralized Reactive Power Sharing Strategy For Inverter-Based Microgrid", International Journal of Electrical Power & Energy Systems, Vol. 98, pp. 531-542, 2018. [DOI:10.1016/j.ijepes.2017.12.023]
8. [8] Kalke, D., Suryawanshi, H. M., Talapur, G. G., Deshmukh, R., Nachankar, P., "Modified Droop and Master Slave Control for Load Sharing in Multiple Standalone AC Microgrids", In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Vol. 1, pp. 1862-1867, IEEE, Oct., 2019. [DOI:10.1109/IECON.2019.8927575]
9. [9] Zhang, H., Zhou, J., Sun, Q., Guerrero, J. M., Ma, D., "Data-Driven Control for Interlinked AC/DC Microgrids via Model-Free Adaptive Control and Dual-Droop Control", IEEE Transactions on Smart Grid, Vol. 8, No. 2, pp. 557-571, 2015. [DOI:10.1109/TSG.2015.2500269]
10. [10] Biglarahmadi, M., Ketabi, A., Baghaee, H.R., Guerrero, J.M., "Integrated Nonlinear Hierarchical Control and Management of Hybrid AC/DC Microgrids", IEEE Systems Journal, Vol. 16, No. 1, pp. 902-913, 2022. [DOI:10.1109/JSYST.2021.3050334]
11. [11] Toub, M., Weaver, W.W., Robinett, R.D., Maaroufi, M., Aniba, G., "A dq Droop Control Strategy for Fixed Frequency VSI-Based AC Microgrids", In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), pp. 332-335, IEEE, Feb., 2018. [DOI:10.1109/ICREGA.2018.8337641]
12. [12] باتمانی، یزدان، نجفی، شهاب‌الدین. "طراحی یک کنترل‌کننده اولیه یکپارچه در ریزشبکه‌های AC با استفاده از روش کنترل ردیاب بهینه". نشریه مهندسی برق و الکترونیک ایران، ۱۶، ۱، ۷۶-۶۵، ۱۳۹۸.
13. [13] Nasirian, V., Shafiee, Q., Guerrero, J.M., Lewis, F.L., Davoudi, A., "Droop-Free Distributed Control for AC Microgrids", IEEE Transactions on Power Electronics, Vol. 31, No. 2, pp. 1600-1617, 2015. [DOI:10.1109/TPEL.2015.2414457]
14. [14] Yazdanian, M., Mehrizi-Sani, A., "Distributed Control Techniques in Microgrids" IEEE Transactions on Smart Grid, Vol. 5, No. 6, pp. 2901-2909, 2014. [DOI:10.1109/TSG.2014.2337838]
15. [15] Deng, F., Mattavelli, P., Zhang, X. "A Distributed Current Sharing Strategy for Islanded AC Microgrids Based on Low-Bandwidth Communication", Electric Power Systems Research, Vol. 206, pp. 107777, 2022. [DOI:10.1016/j.epsr.2022.107777]
16. [16] Shafiee, Q., Nasirian, V., Vasquez, J. C., Guerrero, J. M., Davoudi, A., "A Multi-Functional Fully Distributed Control Framework for AC Microgrids", IEEE transactions on smart grid, Vol. 9, No. 4, pp. 3247-3258, 2016. [DOI:10.1109/TSG.2016.2628785]
17. [17] Shi, M., Chen, X., Zhou, J., Chen, Y., Wen, J., He, H., "PI-Consensus Based Distributed Control of AC Microgrids", IEEE Transactions on Power Systems, Vol. 35, No. 3, pp. 2268-2278, 2019. [DOI:10.1109/TPWRS.2019.2950629]
18. [18] Lai, J., Lu, X., Yu, X., Yao, W., Wen, J., Cheng, S., "Consensus-Based Distributed Event-Triggered Communication Control for AC Microgrids", In 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3740-3745, IEEE, Sep., 2018. [DOI:10.1109/ECCE.2018.8557449]
19. [19] Han, R., Meng, L., Ferrari-Trecate, G., Coelho, E. A. A., Vasquez, J. C., Guerrero, J. M., "Containment and Consensus-Based Distributed Coordination Control to Achieve Bounded Voltage and Precise Reactive Power Sharing in Islanded AC Microgrids", IEEE Transactions on Industry Applications, Vol. 53, No. 6, pp. 5187-5199, 2017. [DOI:10.1109/TIA.2017.2733457]
20. [20] Wu, X., Shen, C., Iravani, R. "A Distributed, Cooperative Frequency and Voltage Control for Microgrids", IEEE Transactions on Smart Grid, Vol. 9, No. 4, pp. 2764-2776, 2016. [DOI:10.1109/TSG.2016.2619486]
21. [21] Lai, J., Lu, X., Yu, X., Monti, A., "Cluster-Oriented Distributed Cooperative Control for Multiple AC Microgrids", IEEE Transactions on Industrial Informatics, Vol. 15, No. 11, pp. 5906-5918, 2019. [DOI:10.1109/TII.2019.2908666]
22. [22] Nabian Dehaghani, M., Taher, S. A., Dehghani Arani, Z., "An Efficient Power Sharing Approach in Islanded Hybrid AC/DC Microgrid Based on Cooperative Secondary Control", International Transactions on Electrical Energy Systems, Vol. 31, No. 6, pp. e12897, 2021. [DOI:10.1002/2050-7038.12897]
23. [23] Poonahela, I., Bayhan, S., Abu-Rub, H., Begovic, M., "Implementation of Finite Control State Model Predictive Control with Multiple Distributed Generators in AC Microgrids", In 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Vol. 1, pp. 206-211, IEEE, Jul., 2020. [DOI:10.1109/CPE-POWERENG48600.2020.9161580]
24. [24] Yao, W., Wang, Y., Xu, Y., Nguyen, T. L., Feng, X., "Distributed Multi-Functional Finite-Time Secondary Control in Cyber-Physical Microgrid", In 2019 IEEE Power 7 Energy Society General Meeting (PESGM), pp. 1-5, IEEE, Aug., 2019. [DOI:10.1109/PESGM40551.2019.8973988]
25. [25] Poonahela, I., Bayhan, S., Abu-Rub, H., Begovic, M., "Implementation of Finite Control State Model Predictive Control with Multiple Distributed Generators in AC Microgrids", In 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Vol. 1, pp. 206-211, IEEE, Jul., 2020. [DOI:10.1109/CPE-POWERENG48600.2020.9161580]
26. [26] Lu, R., Wang, J., Wang, Z., " Distributed Observer-Based Finite-Time Control of AC Microgrid Under Attack", IEEE Transactions on Smart Grid, Vol. 12, No. 1, pp. 157-168, 2020. [DOI:10.1109/TSG.2020.3017793]
27. [27] Choi, J., Habibi, S. I., Bidram, A., "Distributed Finite-Time Event-Triggered Frequency and Voltage Control of AC Microgrids", IEEE Transactions on Power Systems, Vol, 37, No. 3, pp. 1979-1994, 2021. [DOI:10.1109/TPWRS.2021.3110263]
28. [28] Islam, S., Liu, P. X., El Saddik, A., "Distributed Robust Adaptive Finite-Time Voltage Control for Microgrids with Uncertainty", In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2200-2202, IEEE, Oct., 2017. [DOI:10.1109/SMC.2017.8122946]
29. [29] Chandorkar, M.C., Divan, D.M., Adapa, R., "Control of Parallel Connected Inverters in Standalone AC Supply Systems", IEEE transactions on industry applications, Vol. 29, No. 1, pp. 136-143, 1993. [DOI:10.1109/28.195899]
30. [30] Hasanien, H.M., "Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification", IEEE Transaction on Sustainable Energy, Vol. 6, No. 2, pp. 509-515, 2015. [DOI:10.1109/TSTE.2015.2389858]
31. [31] Mahmoud, Y. A., Xiao, W., Zeineldin, H. H., "A Parameterization Approach for Enhancing PV Model Accuracy", IEEE Transaction on Industrial Electronics, Vol. 60, No. 12, pp. 5708-5716, 2012. [DOI:10.1109/TIE.2012.2230606]
32. [32] Kadri, R., Gaubert, J. P., Champenois, G., "An Improved Maximum Power Point Tracking for Photovoltaic Grid-Connected Inverter Based on Voltage-Oriented Control", IEEE Transaction on Industrial Electronics, Vol.58, No. 1, pp. 66-75, 2010. [DOI:10.1109/TIE.2010.2044733]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb