Volume 22, Issue 1 (JIAEEE Vol.22 No.1 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(1): 39-47 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahraki S. Optimal Design Of A New Fault Tolerant Three-Input Majority Gate Based on Quantum Dot Cellular Automata Technology. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :39-47
URL: http://jiaeee.com/article-1-1703-en.html
Higher Education Complex of Saravan
Abstract:   (178 Views)
Quantum-dot Cellular Automata (QCA) is a new nanoscale technology that can be considered as an alternative to CMOS technology. The acceptable performance of this technology in the design of efficient circuits with low power consumption has made it one of the fields of interest for researchers. One of the most important challenges for designers and researchers is removing or adding cells, rotating and moving cells from their original location. Therefore, designing circuits that have an acceptable performance against these errors can help solve this challenge. In this article, a new three-input majority gate is introduced. The introduced gate consists of 17 simple and rotating cells and has an area of about 0.02µm2 and an energy consumption of 4.89 × e-003MeV. In addition, a complete analysis has been carried out regarding the tolerance of the proposed gate against errors of cell omission, cell displacement and extra cell deposition. the results indicate that the proposed gate can tolerate 92% to single cell omission defect, 84% to double cell omission and to extra cell deposition defect is 100% tolerable. The performance of the introduced gate has been proven using the QCA Designer 2.0.3 simulator, and the energy consumption of the introduced gate has also been calculated using the QCA Designer-E simulator.
Full-Text [PDF 1095 kb]   (86 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2024/03/1 | Accepted: 2024/11/19 | Published: 2025/05/29

References
1. [1] Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology, 4(1), 49.‌ [DOI:10.1088/0957-4484/4/1/004]
2. [2] Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied physics, 75(3), 1818-1825.‌ [DOI:10.1063/1.356375]
3. [3] Sherizadeh R, Navimipour NJ (2018) Designing a 2-to-4 decoder on nanoscale based on quantumdot cellular automata for energy dissipation improving. Opt Int J Light Electron Opt 158:477-489 [DOI:10.1016/j.ijleo.2017.12.055]
4. [4] Seyedi S, Navimipour NJ (2018) An optimized three-level design of decoder based on nanoscale quantum-dot cellular automata. Int J Theor Phys 57(7):2022-2033 [DOI:10.1007/s10773-018-3728-0]
5. [5] Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance fulladder based on quantum-dot cellular automata. Nano Commun Netw 16:1-9 [DOI:10.1016/j.nancom.2018.02.002]
6. [6] Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24:1-11 [DOI:10.1007/s00542-018-3716-6]
7. [7] Seyedi S, Navimipour NJ (2017) An optimized design of full adder based on nanoscale quantum-dot cellular automata. Opt Int J Light Electron Opt 158:243-256 [DOI:10.1016/j.ijleo.2017.12.062]
8. [8] Ahmadpour, S. S., Mosleh, M., & Rasouli Heikalabad, S. (2020). The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. Journal of Supercomputing, 76(12). [DOI:10.1007/s11227-020-03249-3]
9. [9] Riki, S., & Serajeh Hassani, F. (2023). Designing a one-bit coplanar QCA ALU using a novel robust area-efficient three-input majority gate design. The Journal of Supercomputing, 1-22.‌ [DOI:10.1007/s11227-023-05280-6]
10. [10] Riki, S., & Hassani, F. S. (2022). Research Paper A Robust Single Layer QCA Decoder Using a Novel Fault Tolerant Three Input Majority Gate. Journal of Optoelectronical Nanostructures, 7(3), 23-45.‌
11. [11] Danehdaran, F., Khosroshahy, M. B., Navi, K., & Bagherzadeh, N. (2018). Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. Journal of Low Power Electronics, 14(1), 38-48.‌ [DOI:10.1166/jolpe.2018.1529]
12. [12] Wang, X., Xie, G., Deng, F., Quan, Y., & Lü, H. (2018). Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. Journal of Semiconductors, 39(8), 085001.‌ [DOI:10.1088/1674-4926/39/8/085001]
13. [13] Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B: Condensed Matter 512, 91{99 (2017) [DOI:10.1016/j.physb.2017.02.028]
14. [14] Ahmadpour, S. S., & Mosleh, M. (2019). New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Communication Networks, 19, 10-25. [DOI:10.1016/j.nancom.2018.11.001]
15. [15] Timler, J., & Lent, C. S. (2002). Power gain and dissipation in quantum-dot cellular automata. journal of applied physics, 91(2), 823-831.‌ [DOI:10.1063/1.1421217]
16. [16] Safoev, N., Jeon, J.-C.: Low area complexity demultiplexer based on multilayer quantum-dot cellular automata. International Journal of Control and Automation 9(12), 165{178 (2016). [DOI:10.14257/ijca.2016.9.12.15]
17. [17] Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular qca tiles for processing-by-wire. Journal of Electronic Testing 23(2), 163{174 (2007) [DOI:10.1007/s10836-006-0548-6]
18. [18] Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra area-eficient fault-tolerant qca full adder. Microelectronics Journal 46(6), 531{542 (2015) [DOI:10.1016/j.mejo.2015.03.023]
19. [19] Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (aoi) gate design for qca implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(12), 1881{1893 (2005) [DOI:10.1109/TCAD.2005.852667]
20. [20] Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M. and Tavakoli, M.B. Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. The Journal of Supercomputing, (2021) pp.1-21. [DOI:10.1007/s11227-020-03567-6]
21. [21] Kumar, D. and Mitra, D. Design of a practical fault-tolerant adder in QCA. Microelectronics Journal, 53 (2016) pp.90-104. [DOI:10.1016/j.mejo.2016.04.004]
22. [22] Ahmadpour, S. S., & Mosleh, M. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. The Journal of Supercomputing, 74(9) (2018) 4696-4716. [DOI:10.1007/s11227-018-2464-9]
23. [23] Sun, M., Lv, H., Zhang, Y. and Xie, G. The fundamental primitives with fault-tolerance in quantum-dot cellular automata. Journal of Electronic Testing, 34(2) (2018) pp.109-122. [DOI:10.1007/s10836-018-5723-z]
24. [24] Moghimizadeh, T., & Mosleh, M. (2019). A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. The Journal of Supercomputing, 75(9), 5688-5716.‌ [DOI:10.1007/s11227-019-02812-x]
25. [25] Khan, A., & Arya, R. (2022). Towards the Design and Analysis of Multiplexer/Demultiplexer using Quantum dot Cellular Automata for Nano Systems. Journal of New Materials for Electrochemical Systems, 25(1).‌ [DOI:10.14447/jnmes.v25i1.a09]
26. [26] Seyedi, S., Navimipour, N. J., & Otsuki, A. (2021). Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics, 10(21), 2565.‌ [DOI:10.3390/electronics10212565]
27. [27] Ni, J., & Chu, Z. (2021, October). An Efficient Demultiplexer Design in Quantum-dot Cellular Automata. In 2021 IEEE 14th International Conference on ASIC (ASICON) (pp. 1-4). IEEE.‌ [DOI:10.1109/ASICON52560.2021.9620355]
28. [28] Ahmadpour, S. S., Navimipour, N. J., Kassa, S., Misra, N. K., & Yalcin, S. (2023). An ultra-efficient design of fault-tolerant 3-input majority gate (FTMG) with an error probability model based on quantum-dots. Computers and Electrical Engineering, 110, 108865.‌ [DOI:10.1016/j.compeleceng.2023.108865]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb