1. [1] Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology, 4(1), 49. [
DOI:10.1088/0957-4484/4/1/004]
2. [2] Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied physics, 75(3), 1818-1825. [
DOI:10.1063/1.356375]
3. [3] Sherizadeh R, Navimipour NJ (2018) Designing a 2-to-4 decoder on nanoscale based on quantumdot cellular automata for energy dissipation improving. Opt Int J Light Electron Opt 158:477-489 [
DOI:10.1016/j.ijleo.2017.12.055]
4. [4] Seyedi S, Navimipour NJ (2018) An optimized three-level design of decoder based on nanoscale quantum-dot cellular automata. Int J Theor Phys 57(7):2022-2033 [
DOI:10.1007/s10773-018-3728-0]
5. [5] Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance fulladder based on quantum-dot cellular automata. Nano Commun Netw 16:1-9 [
DOI:10.1016/j.nancom.2018.02.002]
6. [6] Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24:1-11 [
DOI:10.1007/s00542-018-3716-6]
7. [7] Seyedi S, Navimipour NJ (2017) An optimized design of full adder based on nanoscale quantum-dot cellular automata. Opt Int J Light Electron Opt 158:243-256 [
DOI:10.1016/j.ijleo.2017.12.062]
8. [8] Ahmadpour, S. S., Mosleh, M., & Rasouli Heikalabad, S. (2020). The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. Journal of Supercomputing, 76(12). [
DOI:10.1007/s11227-020-03249-3]
9. [9] Riki, S., & Serajeh Hassani, F. (2023). Designing a one-bit coplanar QCA ALU using a novel robust area-efficient three-input majority gate design. The Journal of Supercomputing, 1-22. [
DOI:10.1007/s11227-023-05280-6]
10. [10] Riki, S., & Hassani, F. S. (2022). Research Paper A Robust Single Layer QCA Decoder Using a Novel Fault Tolerant Three Input Majority Gate. Journal of Optoelectronical Nanostructures, 7(3), 23-45.
11. [11] Danehdaran, F., Khosroshahy, M. B., Navi, K., & Bagherzadeh, N. (2018). Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. Journal of Low Power Electronics, 14(1), 38-48. [
DOI:10.1166/jolpe.2018.1529]
12. [12] Wang, X., Xie, G., Deng, F., Quan, Y., & Lü, H. (2018). Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. Journal of Semiconductors, 39(8), 085001. [
DOI:10.1088/1674-4926/39/8/085001]
13. [13] Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B: Condensed Matter 512, 91{99 (2017) [
DOI:10.1016/j.physb.2017.02.028]
14. [14] Ahmadpour, S. S., & Mosleh, M. (2019). New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Communication Networks, 19, 10-25. [
DOI:10.1016/j.nancom.2018.11.001]
15. [15] Timler, J., & Lent, C. S. (2002). Power gain and dissipation in quantum-dot cellular automata. journal of applied physics, 91(2), 823-831. [
DOI:10.1063/1.1421217]
16. [16] Safoev, N., Jeon, J.-C.: Low area complexity demultiplexer based on multilayer quantum-dot cellular automata. International Journal of Control and Automation 9(12), 165{178 (2016). [
DOI:10.14257/ijca.2016.9.12.15]
17. [17] Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular qca tiles for processing-by-wire. Journal of Electronic Testing 23(2), 163{174 (2007) [
DOI:10.1007/s10836-006-0548-6]
18. [18] Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra area-eficient fault-tolerant qca full adder. Microelectronics Journal 46(6), 531{542 (2015) [
DOI:10.1016/j.mejo.2015.03.023]
19. [19] Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (aoi) gate design for qca implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(12), 1881{1893 (2005) [
DOI:10.1109/TCAD.2005.852667]
20. [20] Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M. and Tavakoli, M.B. Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. The Journal of Supercomputing, (2021) pp.1-21. [
DOI:10.1007/s11227-020-03567-6]
21. [21] Kumar, D. and Mitra, D. Design of a practical fault-tolerant adder in QCA. Microelectronics Journal, 53 (2016) pp.90-104. [
DOI:10.1016/j.mejo.2016.04.004]
22. [22] Ahmadpour, S. S., & Mosleh, M. A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. The Journal of Supercomputing, 74(9) (2018) 4696-4716. [
DOI:10.1007/s11227-018-2464-9]
23. [23] Sun, M., Lv, H., Zhang, Y. and Xie, G. The fundamental primitives with fault-tolerance in quantum-dot cellular automata. Journal of Electronic Testing, 34(2) (2018) pp.109-122. [
DOI:10.1007/s10836-018-5723-z]
24. [24] Moghimizadeh, T., & Mosleh, M. (2019). A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. The Journal of Supercomputing, 75(9), 5688-5716. [
DOI:10.1007/s11227-019-02812-x]
25. [25] Khan, A., & Arya, R. (2022). Towards the Design and Analysis of Multiplexer/Demultiplexer using Quantum dot Cellular Automata for Nano Systems. Journal of New Materials for Electrochemical Systems, 25(1). [
DOI:10.14447/jnmes.v25i1.a09]
26. [26] Seyedi, S., Navimipour, N. J., & Otsuki, A. (2021). Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics, 10(21), 2565. [
DOI:10.3390/electronics10212565]
27. [27] Ni, J., & Chu, Z. (2021, October). An Efficient Demultiplexer Design in Quantum-dot Cellular Automata. In 2021 IEEE 14th International Conference on ASIC (ASICON) (pp. 1-4). IEEE. [
DOI:10.1109/ASICON52560.2021.9620355]
28. [28] Ahmadpour, S. S., Navimipour, N. J., Kassa, S., Misra, N. K., & Yalcin, S. (2023). An ultra-efficient design of fault-tolerant 3-input majority gate (FTMG) with an error probability model based on quantum-dots. Computers and Electrical Engineering, 110, 108865. [
DOI:10.1016/j.compeleceng.2023.108865]