Volume 21, Issue 3 (JIAEEE Vol.21 No.3 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(3): 47-58 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Keshavarzi M, Kuhestani A. Performance Analysis of Physical Layer Key Generation Relying on Discrete Random Phase Injection. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (3) :47-58
URL: http://jiaeee.com/article-1-1640-en.html
Faculty of Electrical and Computer Engineering, Qom University of Technology
Abstract:   (1073 Views)
Among physical layer security schemes, secret key generation schemes are efficient for sixth generation (6G) networks due to their desirable features and capabilities. In particular, schemes based on local random generators can be used to generate secret keys at a high rate. One of these schemes is the random phase injection scheme, in which the channel probe signals with random phase are exchanged between the communication parties (Alice and Bob). In this paper, a key generation scheme based on sending channel probe signals with discrete random phase and for peer to peer communications is presented. While introducing the quantization methods, the simple and practical "quantization with guard band (GB)" scheme is used for key extraction. Also, contrary to many studies, we assume that the legal channel suffers from weak channel reciprocity and noise also affects the received phase of Alice and Bob. For such a scenario, we provide expressions for the key mismatch rate (KMR) as well as the key discarding rate (KDR) per channel probe. Although increasing the GB range decreases the KMR metric, the length of the raw key sequence also shortens. In order to evaluate the effect of GB on the efficiency of the proposed key generation scheme, the raw key generation rate is defined and calculated. The simulation results confirm the analytical results and are useful for determining the power of the probe signal and the GB domain.
 
Full-Text [PDF 1400 kb]   (348 Downloads)    
Type of Article: Research | Subject: Communication
Received: 2023/09/13 | Accepted: 2023/11/6 | Published: 2024/11/2

References
1. [1] W. Saad, M. Bennis and M. Chen, "A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, IEEE Network, vol. 34, no. 3, pp. 134-142, May/Jun. 2020. [DOI:10.1109/MNET.001.1900287]
2. [2] M. Forouzesh et al., "Simultaneous secure and covert transmissions against two attacks under practical assumptions", IEEE Internet of Things Journal, vol. 10, no. 12, pp. 10160-10171, June 2023. [DOI:10.1109/JIOT.2023.3237640]
3. [3] A. Chorti et al., "Context-aware security for 6G wireless: the role of physical layer security", IEEE Communications Standards Magazine, vol. 6, no. 1, pp. 102-108, Mar. 2022. [DOI:10.1109/MCOMSTD.0001.2000082]
4. [4] J. Zhang, G. Li, A. Marshall, A. Hu and L. Hanzo, "A new frontier for IoT security emerging from three decades of key generation relying on wireless channels", IEEE Access, vol. 8, pp. 138406-138446, Jul. 2020. [DOI:10.1109/ACCESS.2020.3012006]
5. [5] T. Lu, L. Chen, J. Zhang, C. Chen, A. Hu, "Joint precoding and phase shift design in reconfigurable intelligent surfaces-assisted secret key generation", IEEE Trans. Inf. Forensics & Security, vol.18, pp.3251-3266, May 2023. [DOI:10.1109/TIFS.2023.3268881]
6. [6] G. Li, C. Sun, J. Zhang, E. Jorswieck, B. Xiao, A. Hu, "Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities", Entropy, vol. 21, no. 5, pp. 1-16, May. 2019. [DOI:10.3390/e21050497]
7. [7] A. K. Junejo, F. Benkhelifa, B. Wong, J. A. Mccann, "LoRa-LiSK: a lightweight shared secret key generation scheme for loRa networks", IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4110-4124, Aug. 2022. [DOI:10.1109/JIOT.2021.3103009]
8. [8] M. Letafati, A. Kuhestani, K. -K. Wong, and M. J. Piran, "A lightweight secure and resilient transmission scheme for the Internet-of-Things in the presence of a hostile jammer", IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4373-4388, Mar. 2021. [DOI:10.1109/JIOT.2020.3026475]
9. [9] M. Mitev, A. Chorti, M. Reed, and L. Musavian, "Authenticated secret key generation in delay-constrained wireless systems", EURASIP J. Wireless Commun. Netw., pp. 1-29, Jun. 2020. [DOI:10.1186/s13638-020-01742-0]
10. [10] M. Mitev, A. Chorti, E. V. Belmega and M. Reed, "Man-in-the-middle and denial of service attacks in wireless secret key generation", in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6. [DOI:10.1109/GLOBECOM38437.2019.9013816]
11. [11] M. Letafati, H. Behroozi, B. H. Khalaj and E. A. Jorswieck, "Hardware-impaired PHY secret key generation with man-in-the-middle adversaries", IEEE Wireless Communications Letters, vol. 11, no. 4, pp. 856-860, Apr. 2022. [DOI:10.1109/LWC.2022.3147952]
12. [12] M. Letafati, H. Behroozi, B. H. Khalaj and E. A. Jorswieck, "Deep learning for hardware-impaired wireless secret key generation with man-in-the-middle attacks", in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6. [DOI:10.1109/GLOBECOM46510.2021.9685537]
13. [13] M. Bottarelli, P. Karadimas, G. Epiphaniou, D. K. B. Ismail, C. Maple, "Adaptive and optimum secret key establishment for secure vehicular communications", IEEE Trans. Veh. Tech., vol.70, no.3, pp.2310-2321, Jan. 2021. [DOI:10.1109/TVT.2021.3056638]
14. [14] Z. Li, Q. Pei, I. Markwood, Y. Liu, and H. Zhu, "Secret key establishment via RSS trajectory matching between wearable devices", IEEE Trans. Inf. Foren. Sec., vol. 13, no. 3, pp. 802-817, Mar. 2018. [DOI:10.1109/TIFS.2017.2768020]
15. [15] M. Letafati, H. Behroozi, B. H. Khalaj and E. A. Jorswieck, "Learning-based secret key generation in relay channels under adversarial Attacks", IEEE Open J. Veh. Tech., vol. 4, pp. 749-764, June 2023. [DOI:10.1109/OJVT.2023.3315216]
16. [16] M. Letafati, H. Behroozi, B. H. Khalaj and E. A. Jorswieck, "Hardware-impaired PHY secret key generation with man-in-the-middle adversaries", IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 856-860, April 2022. [DOI:10.1109/LWC.2022.3147952]
17. [17] N. Patwari, J. Croft, S. Jana, and S. K. Kasera, "High-rate uncorrelated bit extraction for shared secret key generation from channel measurements", IEEE Trans. Mobile Comput., vol. 9, no. 1, pp. 17-30, Jan. 2010. [DOI:10.1109/TMC.2009.88]
18. [18] S. Jana, S. Premnath, M. Clark, S. Kasera, and N. Patwari, "On the effectiveness of secret key extraction from wireless signal strength in real environments", in Proc. ACM MOBICOM, 2009, pp. 321-332. [DOI:10.1145/1614320.1614356]
19. [19] Y. Liu, S. C. Draper, and A. M. Sayeed, "Exploiting channel diversity in secret key generation from multipath fading randomness", IEEE Trans. Inf. Foren. Sec., vol. 7, no. 5, pp. 1484-1497, Oct. 2012. [DOI:10.1109/TIFS.2012.2206385]
20. [20] H. Liu, W. Yang, Y. Jie, and Y. Chen, "Fast and practical secret key extraction by exploiting channel response", in Proc. IEEE INFOCOM, 2013, pp. 3048-3056. [DOI:10.1109/INFCOM.2013.6567117]
21. [21] X. Wei, X. Y. Li, Q. Chen, J. Han, and K. Zhao, "Keep: Fast secret key extraction protocol for D2D communication", in Proc. IEEE Int. Workshop Qual. Service (IWQoS), 2014, pp. 350-359. [DOI:10.1109/IWQoS.2014.6914340]
22. [22] O. A. Topal and G. K. Kurt, "Physical layer authentication for LEO satellite constellations", in 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1952-1957. [DOI:10.1109/WCNC51071.2022.9771727]
23. [23] K. Lin, Z. Ji, Y. Zhang, G. Chen, P. L. Yeoh and Z. He, "Secret key generation based on 3D spatial angles for UAV communications", in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1-6. [DOI:10.1109/WCNC49053.2021.9417510]
24. [24] O. A. Topal, G. K. Kurt and H. Yanikomeroglu, "Securing the inter-spacecraft links: Physical layer key generation from doppler frequency shift", IEEE Journal of Radio Frequency Identification, vol. 5, no. 3, pp. 232-243, Sept. 2021. [DOI:10.1109/JRFID.2021.3077756]
25. [25] A. H. Khalili Tirandaz and A. Kuhestani, "Security evaluation of mutual random phase injection scheme for secret key generation over static point-to-point communications", Journal of Electronic & Cyber Defense, Oct. 2022.
26. [26] T. M. Pham, A. N. Barreto, M. Mitev, M. Matthé and G. Fettweis, "Secure communications in line-of-sight scenarios by rotation-based secret key generation", in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1101-1105. [DOI:10.1109/ICCWorkshops53468.2022.9814519]
27. [27] G. Li, H. Yang, J. Zhang, H. Liu and A. Hu, "Fast and secure key generation with channel obfuscation in slowly varying environments", in 2022 IEEE INFOCOM, IEEE Conference on Computer Communications, pp. 1-10. [DOI:10.1109/INFOCOM48880.2022.9796694]
28. [28] L. Wang, H. An, H. Zhu and W. Liu, "MobiKey: Mobility-based secret key generation in smart home", IEEE Internet of Things J., vol. 7, no. 8, pp. 7590-7600, Aug. 2020. [DOI:10.1109/JIOT.2020.2986399]
29. [29] Y. Peng, P. Wang, W. Xiang, and Y. Li, "Secret key generation based on estimated channel state information for TDD-OFDM systems over fading channels", IEEE Trans. Wireless Commun., 2017. [DOI:10.1109/TWC.2017.2706657]
30. [30] Y. Shehadeh, O. Alfandi, and D. Hogrefe, "Towards robust key extraction from multipath wireless channels", J. Commun. Net., vol. 14, no. 4, Aug. 2012. [DOI:10.1109/JCN.2012.6292245]
31. [31] C. Feng and L. Sun, "Physical layer key generation from wireless channels with non-ideal channel reciprocity: A deep learning based approach", in IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-6. [DOI:10.1109/VTC2022-Spring54318.2022.9860995]
32. [32] X. Guan, N. Ding, Y. Cai and W. Yang, "Wireless key generation from imperfect channel state information: Performance analysis and improvements", in IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019, pp. 1-6. [DOI:10.1109/ICCW.2019.8756656]
33. [33] V. Shahiri, A. Kuhestani and L. Hanzo, "Short-packet amplify-and-forward relaying for the internet-of-things in the face of imperfect channel estimation and hardware impairments", IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 20-36, Mar. 2022. [DOI:10.1109/TGCN.2021.3092067]
34. [34] دزفولی‫زاده، سمانه. مبینی، زهرا. "استراق سمع فعال با کمک UAV برای بهبود امنیت شبکه های مخابرات مشارکتی"، مجله مهندسی برق و الکترونیک ایران، جلد 18، شماره 3، 143-151، پاییز 1400.‬‬‬‬‬‬‬‬‬‬
35. [35] راغب، محمد. کوهستانی، علی. صفوی همامی، سید مصطفی. "طراحی توأم پرتودهی‌ و نویز مصنوعی در ارتباطات موج میلیمتری محرمانه با کمک صفحات انعکاس دهنده هوشمند"، نشریه مهندسی برق و الکترونیک ایران.، جلد ۱۹، شماره 3، ۵۵-۶۲، زمستان 1401.
36. [36] M. Ragheb, A. Kuhestani, M. Kazemi, H. Ahmadi and L. Hanzo, "RIS-aided secure millimeter-wave communication under RF-chain impairment,s", IEEE Trans. Veh. Tech., pp. 1-13, Aug. 2023. [DOI:10.1109/TVT.2023.3307451]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb