Volume 21, Issue 3 (JIAEEE Vol.21 No.3 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(3): 17-26 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

aslinezhad M, khajavi M, Bayat M. Design of absorber and refractive index sensor structure based on graphene metamaterials at terahertz frequencies. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (3) :17-26
URL: http://jiaeee.com/article-1-1610-en.html
Department of Electrical Engineering, Faculty of Electrical Engineering, Shahid Sattari Aeronautical University Of Science and Technology
Abstract:   (917 Views)
In this article, a refractive index absorber and sensor based on graphene metamaterials in the terahertz range is presented. In many studies, the dependence of the sensor on the radiation angle and polarization type has not been investigated, and usually complex structures have been used, the reason for this complexity is the lack of a systematic method and the reader is not convinced by the reasons of the geometry of the structure in the desired frequency band. In this article, advanced transmission line theory has been used to investigate the geometric structure and efficiency of terahertz sensors.The designed sensor has an alternating arrangement of graphene discs on a dielectric material and an integrated gold plate on the other side, which compared to other references has high accuracy in the selection of parameters and the geometry of its structure without the use of optimization algorithms has been calculated. The values maximum figure of merit (FOM) 24.5, the quality factor (Q-Factor) 80 and the sensitivity 1.57 THz⁄RIU have been obtained, which has improved significantly compared to previous works. Also, the simplicity of the structure, reduction of calculation time and memory, higher sensitivity and better stability are the advantages of this design compared to the previous methods.
 
Full-Text [PDF 1539 kb]   (558 Downloads)    
Type of Article: Research | Subject: Communication
Received: 2023/06/25 | Accepted: 2024/07/1 | Published: 2024/11/2

References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید [1] InfiterTathfif, Md. Farhad Hassan, KaziSharmeen Rashid, Ahmad. AzuadYaseer, RakibulHasanSagor. "A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection", Optics Communications, Volume 519, (2022). [DOI:10.1016/j.optcom.2022.128429]
2. [2] Ruijian Cheng, Ling Xu, Xin Yu, Liner Zou, Yun Shen, Xiaohua Deng. "High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces", Optics Communications, Volume 473, August 2021. [DOI:10.1016/j.optcom.2020.125850]
3. [3] برزگرپاریزی، سعیده."حسگر ضریب شکست بر پایه جاذب الکترومغناطیس فراماده باند باریک در فرکانس های مایکروویو و تراهرتز"، نشریه مهندسین برق و الکترونیک ایران، دوره 2، شماره3،89-96،1402
4. [4] M. Aslinezhad, "High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band", Optics Communications, Volume 463 ,Pages: 125411,(2020) [DOI:10.1016/j.optcom.2020.125411]
5. [5] Mohammad. Biabanifard, and Mohammad. SadeghAbrishamian, "Circuit Modeling of Tunable Terahertz Graphene Absorber". Optik-International Journal for Light and Electron Optics. (2017). [DOI:10.1016/j.ijleo.2018.04.121]
6. [6] Sahar. Borzooei, Ehsan. Rezagholizadeh, and Mohammad. Biabanifard, "Graphene disks for frequency control of terahertz waves in broadband applications". Journal of Computational Electronics ,1-14, (2020). [DOI:10.1007/s10825-020-01471-z]
7. [7] Mohammad. Biabanifard, SomayyehAsgari. SadeghBiabanifard, and Mohammad. SadeghAbrishamian, "Analytical design of tunable multi-band terahertz absorber composed of graphene disks". Optik 182,433-442, (2019). [DOI:10.1016/j.ijleo.2019.01.068]
8. [8] George W. Hanson, "Dyadic Green's functions and guided surface waves for a surface conductivity model of grapheme". Journal of Applied Physics 103, no. 6 , 064302, (2008). [DOI:10.1063/1.2891452]
9. [9] Arash. Arsanjani, Mohammad. Biabanifard, and Mohammad. SadeghAbrishamian, "A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber". Superlattices and Microstructures 128 , 157-169, (2019). [DOI:10.1016/j.spmi.2019.01.020]
10. [10] Saeedeh. Barzegar-Parizi, Behzad. Rejaei, and Amin. Khavasi, "Analytical circuit model for periodic arrays of graphene disks". IEEE Journal of Quantum Electronics 51, no. 9 ,1-7, (2015). [DOI:10.1109/JQE.2015.2456871]
11. [11] واثقی، نوشین. محمدصادق ابریشمیان، محمدصادق. "طراحی و بهینه سازی نوعی جدید از مواد جاذب راداری در پهنای باند وسیع و پلاریزاسیون دلخواه به کمک الگوریتم ژنتیک"، نشریه مهندسین برق و الکترونیک ایران،دوره 7، شماره1، 7-1، 1389
12. [12] M. Trushin, & J. Schliemann, "Anisotropic photoconductivity in grapheme", EPL (Europhysics Letters), 96(3), 37006, (2011).. [DOI:10.1209/0295-5075/96/37006]
13. [13] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, & M. G. Spencer, "Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial grapheme", Nano letters, 8(12), 4248-4251, (2008). [DOI:10.1021/nl8019399] [PMID]
14. [14] J. Hu, X. Ruan, & Y. P. Chen, "Thermal conductivity and thermal rectification in graphenenanoribbons: a molecular dynamics study", Nano letters, 9(7), 2730-2735, (2009). [DOI:10.1021/nl901231s] [PMID]
15. [15] V. Ryzhii, M. Ryzhii, & T. Otsuji, "Negative dynamic conductivity of graphene with optical pumping", Journal of Applied Physics, 101(8), 083114, (2007). [DOI:10.1063/1.2717566]
16. [16] H. R. Taghvaee, F. Zarrinkhat, & M. S. Abrishamian, "Terahertz Kerr nonlinearity analysis of a microribbongraphene array using the harmonic balance method. Journal of Physics D:", Applied Physics, 50(25), 255104, (2017). [DOI:10.1088/1361-6463/aa7194]
17. [17] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, & F. Wang, "Grapheneplasmonics for tunable terahertz metamaterials", Nature nanotechnology, 6(10), 630, (2011). [DOI:10.1038/nnano.2011.146] [PMID]
18. [18] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, & J. Hone, "Boron nitride substrates for high-quality graphene electronics", Nature nanotechnology, 5(10), 722, (2010). [DOI:10.1038/nnano.2010.172] [PMID]
19. [19] M. Keshavarz, Mehdi and Abbas. Alighanbari. "Terahertz refractive index sensor based on Tamm plasmon-polaritons with grapheme", Applied optics 58, no. 13 3604-3612, (2019). [DOI:10.1364/AO.58.003604] [PMID]
20. [20] Zhang, Yuping, Tongtong Li, BeibeiZeng, Huiyun Zhang, HuanhuanLv, Xiaoyan Huang, Weili Zhang, and Abul K. Azad. "A graphene based tunable terahertz sensor with double Fano resonances:, Nanoscale 7, no. 29 12682-12688, (2015). [DOI:10.1039/C5NR06425B]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb