Volume 21, Issue 4 (JIAEEE Vol.21 No.4 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(4): 15-22 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbarzadeh Jelodar R, Rezvani M, N. Shirazi A, Yousefi B. Two Layer Hierarchical Control Based on Distributed Secondary Control with the Aim of Improving Power Sharing and Voltage Regulation of Islanded DC Microgrids. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :15-22
URL: http://jiaeee.com/article-1-1596-en.html
Nour Branch of Islamic Azad University
Abstract:   (910 Views)
Improvements in power electronic technology and devices cause DC microgrids (DC MGs) to be utilized in which the integration of DC distributed generation (DG) sources and loads into the power system is facilitated. Since the power sharing between DG sources and DC bus voltage regulation are two important control objectives in these microgrids, a two-layer hierarchical control strategy is implemented in this article to achieve these goals. The traditional drop control method is employed in the primary layer, but since it is not able to achieve these goals simultaneously, therefore, the proposed secondary control layer which is based on the proportional-integral cooperative distributed averaging (PICDA) secondary control strategy is introduced to overcome the challenges and achieve accurate voltage regulation. The proposed PICDA strategy has high flexibility due to the lack of prior knowledge of the grid topology and has a high convergence speed in reaching the control reference point. An islanded DC MG is simulated in MATLAB/Simulink software environment to verify the effectiveness of the proposed method, and the results of the proposed secondary control strategy are compared and analyzed with another distributed method under different operating scenarios, and the outperformance of the PICDA control method is confirmed.
Full-Text [PDF 1229 kb]   (277 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/05/10 | Accepted: 2023/09/18 | Published: 2025/01/11

References
1. [1] باتمانی، یزدان، نجفی، شهاب‌الدین، "طراحی یک کنترل‌کننده اولیه یکپارچه در ریزشبکه‌های AC با استفاده از روش کنترل ردیاب بهینه"، نشریه مهندسی برق و الکترونیک ایران، شماره 16، دوره 1، صص. 65-76، ۱۳۹۸.
2. [2] افراسیابی، مرتضی. رک‌رک، اسماعیل. "یک طرح کنترلی هماهنگ جهت بهبود کیفیت ولتاژ توسط اینورتر واسط منابع تولید پراکنده"، نشریه مهندسی برق و الکترونیک ایران، شماره 16، دوره 1، صص. 51-62، ۱۳۹۸.
3. [3] P. Asmus, "Microgrids, Virtual Power Plants and our Distributed Energy Future", Electric Journal, Vol. 23, No. 10, pp. 72 82, 2010. [DOI:10.1016/j.tej.2010.11.001]
4. [4] J.J. Justo, F. Mwasilu, J. Lee, J. W. Jung, "AC-Microgrids Versus DC-Microgrids with Distributed Energy Resources: A Review", Renewable and Sustainable Energy Reviews, Vol. 24, pp. 387-405, 2013. [DOI:10.1016/j.rser.2013.03.067]
5. [5] T. Dragivcevic, X. Lu, J. C. Vasquez, J. M. Guerrero, "DC Microgrids-Part II: A Review of Power Architectures, Applications, and Standardization Issues", IEEE Transaction on Power Electronics, Vol. 31, No. 5, pp. 3528-3549, 2015. [DOI:10.1109/TPEL.2015.2464277]
6. [6] E. Espina, J. Llanos, C. Burgos-Mellado, R. Cardenas-Dobson, M. Martinez-Gomez, D. Saez, "Distributed Control Strategies for Microgrids: An Overview", IEEE Access, Vol. 8, pp. 193412-193448, 2020. [DOI:10.1109/ACCESS.2020.3032378]
7. [7] حسامی نقشبندی، علی. حبیبی، فرشید. بیورانی، حسن. "طراحی یک کنترل‌کننده مقاوم برای پایداری ولتاژ یک ریزشبکه در حالات مختلف کاری"، نشریه مهندسی برق و الکترونیک ایران، شماره 10، دوره 1، صص. 23-32، 1392.
8. [8] F. Gao, Y. Gu, S. Bozhko, G. Asher, P. Wheeler, "Analysis of Droop Control Methods in DC Microgrid", In 2014 16th European Conference on Power Electronics and Applications, pp. 1-9, 2014. [DOI:10.1109/EPE.2014.6910846]
9. [9] Y. Liu, Y. Han, C. Lin, P. Yang, C. Wang, "Design and Implementation of Droop Control Strategy for DC Microgrid Based on Multiple DC/DC Converters", In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 3896-3901, 2019. [DOI:10.1109/ISGT-Asia.2019.8881129]
10. [10] M. A. Ghalib, EG. Shehat, J. Thomas, R.M. Mostafa, "Adaptive Droop Control for High Performance Operation in Low-Voltage DC Microgrids", Electrical Engineering, Vol. 101, No. 4, pp. 1311-1322, 2019. [DOI:10.1007/s00202-019-00869-8]
11. [11] U.B. Krishnan, S.J. Mija, E.P. Cheriyan, "Improved Small Signal Stability of Microgrid-A Droop Control Scheme with SMC", Electrical Engineering, Vol. 104, No. 4, pp. 2569-2587, 2022. [DOI:10.1007/s00202-022-01494-8]
12. [12] L. Meng, T. Dragicevic, J. Roldán-Pérez, J. C. Vasquez, J. M. Guerrero, "Modeling and Sensitivity Study of Consensus Algorithm-Based Distributed Hierarchical Control for DC Microgrids", IEEE Transactions on Smart Grid, Vol. 7, No. 3, pp. 1504-1515, 2015. [DOI:10.1109/TSG.2015.2422714]
13. [13] X. Lu, X. Yu, J. Lai, J. M. Guerrero, H. Zhou, "Distributed Secondary Voltage and Frequency Control for islanded microgrids with Uncertain Communication Links", IEEE Transactions on Industrial Information, Vol. 13, No. 2, pp. 448-460, 2016. [DOI:10.1109/TII.2016.2603844]
14. [14] C. Dou, D. Yue, Z. Zhang, K. Ma, "MAS Based Distributed Cooperative Control for DC Microgrid Through Switching Topology Communication Network with Time-Varying Delays", IEEE System Journal, Vol. 13, No. 1, pp. 615-624, 2017. [DOI:10.1109/JSYST.2017.2726081]
15. [15] P. Mathew, S. Madichetty, S. Mishra, "A Multilevel Distributed Hybrid Control Scheme for Islanded DC Microgrids", IEEE System Journal, Vol. 13, No. 4, pp. 4200-4207, 2019. [DOI:10.1109/JSYST.2019.2896927]
16. [16] M. Biglarahmadi, A. Ketabi, H. R. Baghaee, J. M. Guerrero, "Integrated Nonlinear Hierarchical Control and Management of Hybrid AC/DC Microgrids", IEEE System Journal, Vol. 16, No. 1, pp. 90-913, 2021. [DOI:10.1109/JSYST.2021.3050334]
17. [17] M. Nabian Dehaghani, S. A. Taher, Z. Dehghani Arani, "An Efficient Power Sharing Approach in Islanded Hybrid AC/DC microgrid based on Cooperative Secondary Control", International Transactions On Electrical Energy Systems, Vol. 31, No. 6, pp. e12897, 2021. [DOI:10.1002/2050-7038.12897]
18. [18] M. Nabian Dehaghani, S. A. Taher, Z. Dehghani Arani, "Distributed Secondary Voltage and Current Control Scheme with Noise Nullification Ability for DC Microgrids", In 2020 10th Smart Grid Conference (SGC), pp. 1-6, 2020. [DOI:10.1109/SGC52076.2020.9335768]
19. [19] Y. Li, Z. Zhang, T. Dragivcevic, J. Rodriguez, "A Unified Distributed Cooperative Control of DC Microgrids Using Consensus Protocol", IEEE Transactions on Smart Grid, Vol. 12, No. 3, pp. 1880-1892, 2020. [DOI:10.1109/TSG.2020.3041378]
20. [20] T. Morstyn, B. Hredzak, G. D. Demetriades, V. G. Agelidis, "Unified Distributed Control for DC Microgrid Operating Modes", IEEE Transations on Power Systems, Vol. 31, No. 1, pp. 802-812, 2015. [DOI:10.1109/TPWRS.2015.2406871]
21. [21] F. Guo, Q. Xu, C. Wen, L. Wang, P. Wang, "Distributed Secondary Control for Power Allocation and Voltage Restoration in Islanded DC Microgrids", IEEE Transactions on Sustainable Energy, Vol. 9, No. 4, pp. 1857-1869, 2018. [DOI:10.1109/TSTE.2018.2816944]
22. [22] S. Sahoo, S. Mishra, "A distributed finite time secondary average voltage regulation and Current sharing Controller for DC Microgrids", IEEE Transactions on Smart Grid, Vol. 10, No. 1, pp. 282-292, 2017. [DOI:10.1109/TSG.2017.2737938]
23. [23] D. H. Dam, H.H. Lee, "A Power Distributed Control Method for Proportional Load Power Sharing and Bus Voltage Restoration in a DC Microgrid", IEEE Transactions on Industrial Application, Vol. 54, No. 4, pp. 3616-3625, 2018. [DOI:10.1109/TIA.2018.2815661]
24. [24] J. Schiffer, F. Dörfler, "On Stability of a Distributed Averaging PI Frequency and Active Power Controlled Differential-Algebraic Power System Model", In 2016 European Control Conference (ECC), pp. 1487-1492, 2016. [DOI:10.1109/ECC.2016.7810500]
25. [25] E. Tegling, H. Sandberg, "On the Coherence of Large-Scale Networks with Distributed PI and PD Control", IEEE Control System Letter, Vol. 1, No. 1, pp. 170-175, 2017. [DOI:10.1109/LCSYS.2017.2711781]
26. [26] M. Andreasson, E. Tegling, H. Sandberg, K. H. Johansson, "Performance and Scalability of Voltage Controllers in Multi-Terminal HVDC Networks", In 2017 American Control Conference (ACC), pp. 3029-3034, 2017. [DOI:10.23919/ACC.2017.7963412]
27. [27] J. Lee, B. Kim, J. Back, "A Distributed Proportional Load Sharing Controller for DC Microgrids", In 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), pp. 1-6, 2019. [DOI:10.23919/ICPE2019-ECCEAsia42246.2019.8797036]
28. [28] C. N. Papadimitriou, E. I. Zountouridou, N. D. Hatziargyriou, "Review of hierarchical control in DC microgrids", Electric Power Systems Research, Vol. 122, pp. 159-167, 2015. [DOI:10.1016/j.epsr.2015.01.006]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb