Volume 21, Issue 1 (JIAEEE Vol.21 No.1 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(1): 1-9 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi M. Presentation of Multi Inputs Full Ternary Comparator with Carbon Nano Tube Field Effect Transistor. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :1-9
URL: http://jiaeee.com/article-1-1587-en.html
Faculty of Engineering, Azarbaijan Shahid Madani University
Abstract:   (1961 Views)

 The increasing growth of processing data size in digital systems has increased the number of connections between processing systems, which requires a lot of space to establish communication with other processing systems. The design and implementation of multi value level processing systems reduce the size of processing data. On the other hand, the important issue in the implementation of multi-level processing systems is problems and complications of design. The use of substitute transistors such as nano-carbon tube field effect transistors instead of metal oxide semiconductor field effect transistors while reducing design problems in nano dimensions is functionally more suitable than metal oxide semiconductor field effect transistors. In this article, a report on the implementation of a multi inputs full ternary comparator based on carbon nanotube field effect transistor technology is presented. The implementation report of the one digit and two-digit ternary comparator at the transistor level has been done in this article, and the implementation method of the multi-input ternary comparator has also been presented. The simulation results in the HSPICE software environment show that the power consumption of the proposed comparator is 0.55 µW and the propagation delay time is 70 ps. In addition, the proposed comparator has been implemented based on 32 nm carbon nanotube field effect transistors technology.
 
Full-Text [PDF 873 kb]   (1017 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2023/04/1 | Accepted: 2023/05/13 | Published: 2023/09/9

References
1. [1] Kim, N.S., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J., Kandemir, M. and Narayanan, V., "Leakage current: Moore's law meets static power", Computer 36, No.12, pp.68-75, 2003. [DOI:10.1109/MC.2003.1250885]
2. [2] Powell, M., "Reducing Leakage in a High-Performance Deep-Submicron Instruction Cache", IEEE Trans. VLSI, pp. 77-89, Feb. 2001. [DOI:10.1109/92.920821] [PMID]
3. [3] Anis, M., "Subthreshold leakage current: challenges and solutions", In Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat. No. 03CH37442) (pp. 77-80). IEEE.
4. [4] Hashempour, H., Lombardi, F., "Device model for ballistic CNFETs using the first conducting band", IEEE Des. Test Comput. Vol.25, No.2, pp.178-186, 2008. [DOI:10.1109/MDT.2008.34]
5. [5] Lin Y., Appenzeller J., Knoch J., Avouris P., "High-performance carbon nanotube field-effect transistor with tunable polarities", IEEE Trans. Nanotechnol. Vol. 4, No.5, pp.481-489, 2005. [DOI:10.1109/TNANO.2005.851427]
6. [6] Bishop, M.D., Hills, G., Srimani, T., Lau, C., Murphy, D., Fuller, S., Humes, J., Ratkovich, A., Nelson, M. and Shulaker, "Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities", Nature Electronics, Vol.3, No.8, pp.492-501, 2020. [DOI:10.1038/s41928-020-0419-7]
7. [7] Li, J., Zhang, Q., Yang, D. and Tian, J., "Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon", Vol.42, No.11, pp.2263-2267, 2004. [DOI:10.1016/j.carbon.2004.05.002]
8. [8] Li, J., Zhang, Q., Yan, Y., Li, S. and Chen, L., "Fabrication of carbon nanotube field-effect transistors by fluidic alignment technique", IEEE transactions on nanotechnology, Vol. 6, No.4, pp.481-484, 2007. [DOI:10.1109/TNANO.2007.897868]
9. [9] Xiao, Z. and Camino, F.E., "The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials", Nanotechnology, Vol. 20, No.13, pp.135205, 2009. [DOI:10.1088/0957-4484/20/13/135205] [PMID]
10. [10] Ohnaka, H., Kojima, Y., Kishimoto, S., Ohno, Y. and Mizutani, T., "Fabrication of carbon nanotube field effect transistors using plasma-enhanced chemical vapor deposition grown nanotubes", Japanese journal of applied physics, Vol.45, No.6S, pp.5485, 2006. [DOI:10.1143/JJAP.45.5485]
11. [11] مهدی مرادی نسب، مرتضی فتحی پور، "مدل بسته جریان - ولتاژ در ترانزیستورهای نانولوله کربنی آلاییده" نشریه مهندسی برق و الکترونیک، دوره ۸، شماره ۲، ۱۳۹۰ .
12. [12] Gan, K.J., Lu, J.J., Yeh, W.K., Chen, Y.H., Chen, Y.W., "Multiple-valued logic design based on the multiple peak BiCMOSNDR circuits", Eng. Sci. Technol. Int. J. 19, pp.888-893, 2016. [DOI:10.1016/j.jestch.2015.12.007]
13. [13] Hosseini, S.A. and Etezadi, S., "A novel very low-complexity multi-valued logic comparator in nanoelectronics", Circuits, Systems, and Signal Processing, Vol.39, pp.223-244, 2020. [DOI:10.1007/s00034-019-01158-2]
14. [14] Ramanan, N., and Misra, V., "Multivalued logic using a novel multichannel GaN MOS structure", IEEE electron device letters, Vol.32, No.10, pp.1379-1381,2011. [DOI:10.1109/LED.2011.2163149]
15. [15] Temel, T., and Morgul, A., "Multi-valued logic function implementation with novel current-mode logic gates", In 2002 IEEE International Symposium on Circuits and Systems. Proceedings, Cat. No. 02CH37353, Vol. 1, pp. I-I, IEEE, 2002.
16. [16] Raychowdhury, A., and Roy, K., "A novel multiple-valued logic design using ballistic carbon nanotube FETs", In Proceedings. 34th International Symposium on Multiple-Valued Logic, pp. 14-19. IEEE, 2004.
17. [17] Lin, S., Kim, Y.B. and Lombardi, F., "A novel CNTFET-based ternary logic gate design", In 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 435-438. IEEE, 2009. [DOI:10.1109/MWSCAS.2009.5236063]
18. [18] Jaber, R.A., El-Hajj, A.M., Kassem, A., Nimri, L.A. and Haidar, A.M., "CNFET-based designs of Ternary Half-Adder using a novel "decoder-less" ternary multiplexer based on unary operators", Microelectronics Journal, Vol.96, pp.104698, 2020. [DOI:10.1016/j.mejo.2019.104698]
19. [19] Temel, T. and Morgul, A., 2002, May. "Multi-valued logic function implementation with novel current-mode logic gates", In 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No. 02CH37353), Vol. 1, pp. I-I. IEEE, 2002.
20. [20] Yousefi, M., Moradi Z., and Monfaredi, K., "CNTFET Based Pseudo Ternary Adder Design and Simulation", Vol.54, No.2 (Special Issue), pp.361-376, 2022.
21. [21] Keshavarzian, P. and Sarikhani, R., "A novel CNTFET-based ternary full adder". Circuits, Systems, and Signal Processing, 33, pp.665-679, 2014. [DOI:10.1007/s00034-013-9672-6]
22. [22] مختار محمدی قناتغستانی، "یک جمع کننده‌ دو بیتی موازی با سرعت بالا مبتنی بر تکنولوژی ‌ترانزیستورهای نانو لوله کربنی جهت استفاده در واحدهای محاسباتی"، نشریه مهندسی برق و الکترونیک، دوره ۲۰، شماره ۱ ، صفحات،۱۴۰۲ .
23. [23] یوسفی موسی ، موسوی سید سعید و منفردی خلیل، "مدار نمونه‌گیر-نگهدارنده کم‌مصرف با استفاده از سوئیچ‌های آنالوگ ناقل جریان مبتنی بر ترانزیستور اثر میدانی نانولوله‌کربنی"، مجله مهندسی برق دانشگاه تبریز، دوره 52، شماره 1، صفحات 23-31، 1401.
24. [24] Moaiyeri, M.H., Mirzaee, R.F., Navi, K. and Hashemipour, O., "Efficient CNTFET-based ternary full adder cells for nanoelectronics", Nano-Micro Letters, Vol.3, pp.43-50, 2011. [DOI:10.1007/BF03353650]
25. [25] Jafarzadehpour, F. and Keshavarzian, P., "Low‐power consumption ternary full adder based on CNTFET", IET Circuits, Devices & Systems, Vol.10, No.5, pp.365-374. 2016. [DOI:10.1049/iet-cds.2015.0264]
26. [26] Gadgil, S. and Vudadha, C., "Design of CNTFET-based ternary ALU using 2: 1 multiplexer based approach", IEEE Transactions on Nanotechnology, Vol.19, pp.661-671, 2020. [DOI:10.1109/TNANO.2020.3018867]
27. [27] Vudadha, C., Sai, P.P., Sreehari, V. and Srinivas, M.B., "CNFET based ternary magnitude comparator", In 2012 International Symposium on Communications and Information Technologies (ISCIT), pp. 942-946. IEEE, 2012. [DOI:10.1109/ISCIT.2012.6381040]
28. [28] موسوی سید سعید ، یوسفی موسی و منفردی خلیل ، "طراحی و شبیه‌سازی مبدل ترنری به باینری بهینه شده بر پایه ترانزیستورهای اثر میدان نانو لوله کربنی"، مجله پردازش پیشرفته سیگنال، دوره 4، شماره 1، صفحات 291-301، 1399.
29. [29] Mohammaden, A., Fouda, M.E., Alouani, I., Said, L.A. and Radwan, A.G., "CNTFET design of a multiple-port ternary register file", Microelectronics Journal, 113, p.105076, 2021. [DOI:10.1016/j.mejo.2021.105076]
30. [30] Amirany, A., Jafari, K. and Moaiyeri, M.H., "High-performance spintronic nonvolatile ternary flip-flop and universal shift register", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.29, No.5, pp.916-924, 2021. [DOI:10.1109/TVLSI.2021.3055983]
31. [31] Shalamzari, Z.D., Zarandi, A.D., and Reshadinezhad, M.R., "Newly multiplexer-based quaternary half-adder and multiplier using CNTFETs", AEU-International Journal of Electronics and Communications, Vol.117, p.153128, 2020. [DOI:10.1016/j.aeue.2020.153128]
32. [32] Ebrahimi, S.A., Reshadinezhad, M.R., Bohlooli, A. and Shahsavari, M., "Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits", Microelectronics Journal, Vol.53, pp.156-166, 2016. [DOI:10.1016/j.mejo.2016.04.016]
33. [33] Daraei, A. and Hosseini, S.A., "Alternative design techniques of quaternary latch, flip-flops and counters in nanoelectronics", International Journal of Electronics, Vol.109, No.4, pp.669-698, 2022. [DOI:10.1080/00207217.2021.1941286]
34. [34] بهاره سیدزاده ثانی، دکتر بهزاد ابراهیمی، "حافظۀ دسترسی تصادفی پویای جاسازی شده بر مبنای سلول بهره ۵ ترانزیستوری، به‌صورت کم‌توان و با زمان نگهداری بالا در فناوری‌های فین‌فت کمتر از ۲۲ نانومتر"، نشریه مهندسی برق و الکترونیک ، دوره ۱۹، شماره ۲، صفحات ،۱۴۰۱ .
35. [35] Vudadha, C., Phaneendra, P.S., Makkena, G., Sreehari, V., Muthukrishnan, N.M. and Srinivas, M.B., "Design of CNFET based ternary comparator using grouping logic", In 2012 IEEE Faible Tension Faible Consommation (pp. 1-4). IEEE, 2012. [DOI:10.1109/FTFC.2012.6231748]
36. [36] Lee, C.S., Pop, E., Franklin, A.D., Haensch, W. and Wong, H.S., "A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime-Part I: Intrinsic elements", IEEE transactions on electron devices, Vol.62, No.9, pp.3061-3069, 2015. [DOI:10.1109/TED.2015.2457453]
37. [37] Lee, C.S., Pop, E., Franklin, A.D., Haensch, W. and Wong, H.S.P., "A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime-Part II: Extrinsic elements, performance assessment, and design optimization", IEEE Transactions on Electron Devices, Vol.62, No.9, pp.3070-3078, 2015. [DOI:10.1109/TED.2015.2457424]
38. [38] Stanford University CNFET model Website. Stanford University, Stanford, CA (2008) (online). http://nano.stanford.edu/model.php?id=23
39. [39] Deng, J. and Wong, H.S.P., "A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part I: Model of the intrinsic channel region", IEEE Transactions on Electron Devices, Vol.54, No.12, pp.3186-3194, 2007. [DOI:10.1109/TED.2007.909030]
40. [40] Deng, J., and Wong, H.S.P., "A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: Full device model and circuit performance benchmarking", IEEE Transactions on Electron Devices, Vol.54, No.12, pp.3195-3205, 2007. [DOI:10.1109/TED.2007.909043]
41. [41] Rani, S., Singh, B. and Devi, R., "CNTFET Based Ternary 1-Trit & 2-Trit Comparators for Low Power High-Performance Applications", Transactions on Electrical and Electronic Materials, pp.1-16, 2021. [DOI:10.1007/s42341-021-00292-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb