Volume 21, Issue 3 (JIAEEE Vol.21 No.3 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(3): 37-45 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheikhpour A, Mozaffari Tazehkand B. Enhancing Spectral Efficiency for Massive MIMO Systems Using Power Allocation Approaches. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (3) :37-45
URL: http://jiaeee.com/article-1-1541-en.html
Faculty of Electrical and Computer Engineering University of Tabriz
Abstract:   (1126 Views)
Massive Multiple Input Multiple Output (MIMO) is recognized as one of the next-generation technologies of wireless communication which provides a high Spectral Efficiency (SE). Due to the dense distribution of users in the communication cells, supporting massive connectivity, low latency, higher SE and Power Efficiency (PE) have been recognized as the main challenges of the next-generation wireless networks. An appropriate strategy for allocating power to different users is one of the ways to enhance the SE and PE. In this paper, to enhance SE of the massive MIMO system with hybrid precoding and based on the Discrete Fourier Transform (DFT) processing, two methods for allocating power to users are proposed. In the first method, in order to enhance the SE of users with poor channel conditions, we assign a constant power coefficient to each user according to the user’s channel conditions. In the second method, we allocate the optimal power coefficients to users by using the Particle Swarm Optimization (PSO) algorithm. Also, we evaluate the effect of the number of radio frequency (RF) chains, the Signal to Noise Ratio (SNR) and the number of users on the SE of the system. Simulation results show that both proposed power allocation methods improve the total SE of the system.
Full-Text [PDF 703 kb]   (393 Downloads)    
Type of Article: Research | Subject: Communication
Received: 2022/12/19 | Accepted: 2024/01/10 | Published: 2024/11/2

References
1. [1] G. Skourletopoulos, and et al., "Towards mobile cloud computing in 5G mobile networks: applications, big data services and future opportunities", Advances in Mobile Cloud Computing and Big Data in the 5G Era. Springer, pp. 43-62, 2017. [DOI:10.1007/978-3-319-45145-9_3]
2. [2] P. Liu, K. Luo, D. Chen, T. Jiang, and M. Matthaiou, "Spectral Efficiency Analysis of Multi-Cell Massive MIMO Systems with Ricean Fading", In 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1-7, 2018. [DOI:10.1109/WCSP.2018.8555623]
3. [3] M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, "Spatial modulation for generalized MIMO: Challenges, opportunities and implementation", Proc. IEEE, vol. 102, no. 1, pp. 56-103, 2014. [DOI:10.1109/JPROC.2013.2287851]
4. [4] زراعتکارمقدم، جواد. ناصر، ندا. قاضی‌زاده، رضا. "مدل‌سازی دو بعدی کانال‌های چند ورودی - چند خروجی با آرایه‌های قطبی ‌شده"، مجله مهندسی برق و الکترونیک ایران، سال ۱۱، شماره ۲، پاییز و زمستان ۱۳۹۳.
5. [5] زراعتکارمقدم، جواد. فرخی، حمید. ناصر، ندا. "بررسی تأثیر فاصله‌ی بین آنتن‌ها در فرستنده و گیرنده بر روی ظرفیت کانالMIMO "، مجله مهندسی برق و الکترونیک ایران، سال ۱۳، شماره ۲، تابستان ۱۳۹۵.
6. [6] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems", IEEE Communications Magazine, vol. 54, no. 2, pp. 186-195, 2014. [DOI:10.1109/MCOM.2014.6736761]
7. [7] آتشبار، محمود. پاسنگی، پریسا. "روش جدید برای تخمین کور کانال مسیر پایین رونده در سیستم MIMO حجیم"، مجله سامانه‌های غیرخطی در مهندسی برق، سال ۵، شماره ۱، زمستان ۱۳۹۷.
8. [8] ابراهیمی، رضا. ضمیری جعفریان، حسین. خادمی، مرتضی. "تخصیص سازگار دنباله پایلوت در سیستم چندآنتنی چندسلولی چندکاربره انبوه در شبکه مخابرات بی سیم 5G"، نشریه مهندسی برق و الکترونیک ایران، سال 19، شماره 3، 1401.
9. [9] عمادی، محمدجواد. معصومی، حامد. "تخصیص بهینه‌ی توان پایلوت و داده در سیستم چند-ورودی چند-خروجی ابعاد بزرگ با در نظر گرفتن نارسایی سخت‌افزار"، نشریه مهندسی برق و الکترونیک ایران، سال 17، شماره 1، 1399.
10. [10] بیانی‫فر، مهدی. رضوی زاده، سید محمد. "بررسی کارایی توان کانال تداخلی رله چند ورودی-چند خروجی انبوه"، نشریه مهندسی برق و الکترونیک ایران، سال 14، شماره 2، 1396.
11. [11] W. Tan, M. Matthaiou, S. Jin, and X. Li, "Spectral Efficiency of DFT-Based Processing Hybrid Architectures in Massive MIMO", IEEE Wireless Communications Letters, vol. 6, no. 5, pp. 586-589, 2017. [DOI:10.1109/LWC.2017.2719036]
12. [12] M. Vu, and A. Paulraj, "MIMO wireless linear precoding", IEEE Signal Process. Mag., vol. 24, no. 5, pp. 86-105, Sep. 2007. [DOI:10.1109/MSP.2007.904811]
13. [13] A. Alkhateeb, O. El-Ayach, G. Leus, and R. W. Heath, "Hybrid precoding for millimeter wave cellular systems with partial channel knowledge," 2013 Information Theory and Applications Workshop (ITA), pp. 1-5, Feb. 2013. [DOI:10.1109/ITA.2013.6522603]
14. [14] W. Tan, D. Xie, J. Xia, W. Tan, L. Fan and S. Jin, "Spectral and Energy Efficiency of Massive MIMO for Hybrid Architectures Based on Phase Shifters," IEEE Access, vol. 6, pp. 11751-11759, 2018. [DOI:10.1109/ACCESS.2018.2796571]
15. [15] W. Tan, et al. "Low cost and high efficiency hybrid architecture massive MIMO systems based on DFT processing," Wireless Communications and Mobile Computing, 2018. [DOI:10.1155/2018/7597290]
16. [16] K. Dovelos, M. Matthaiou, H. Q. Ngo and B. Bellalta, "Channel Estimation and Hybrid Combining for Wideband Terahertz Massive MIMO Systems," IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1604-1620, 2021. [DOI:10.1109/JSAC.2021.3071851]
17. [17] K. Chen, C. Qi and G. Y. Li, "Two-Step Codeword Design for Millimeter Wave Massive MIMO Systems with Quantized Phase Shifters," IEEE Transactions on Signal Processing, vol. 68, pp. 170-180, 2020. [DOI:10.1109/TSP.2019.2959250]
18. [18] E. Björnson, H. Jakob, and S. Luca, "Massive MIMO networks: Spectral, energy, and hardware efficiency," Foundations and Trends® in Signal Processing, 2017. [DOI:10.1561/2000000093]
19. [19] G.-c. Chen, and J.-s. Yu, "Particle swarm optimization algorithm," INFORMATION AND CONTROL-SHENYANG, vol. 34, no. 3, pp. 318, 2005.
20. [20] M. R. G. Aghdam, R. Abdolee, S. S. Sahbari, and B. M. Tazehkand, "Non-Gradient Based PDF Approximation for Sensor Selection in Cognitive Sensor Networks," International Journal of Interdisciplinary Telecommunications and Networking (IJITN), vol. 11, no. 1, pp. 1-16, 2019.‌ [DOI:10.4018/IJITN.2019010101]
21. [21] Eberhart, and Y. Shi, "Particle swarm optimization: developments, applications and resources," Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81-86, 2001. [DOI:10.1109/CEC.2001.934374]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb