Volume 20, Issue 4 (JIAEEE Vol.20 No.4 2023)                   Journal of Iranian Association of Electrical and Electronics Engineers 2023, 20(4): 1-13 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rouin H, Varesi K. An Improved Two-Stage Inverter with High Voltage Boosting Capability and Continuous Input Current Feasible for Low-Power Solar Applications. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (4) :1-13
URL: http://jiaeee.com/article-1-1504-en.html
Faculty of Electrical Engineering, Sahand University of Technology
Abstract:   (1123 Views)
In this paper, an improved structure for two-stage inverters is proposed, which profits from high voltage boosting ability without using a transformer. The proposed structure consists of two main stages, including an improved dc-dc converter and an H-bridge. Using only one switch in the input section (the proposed dc-dc converter), not only reduces the cost and dimensions of the converter, but also minimizes the number of working modes (only two modes) and, as a result, simplifies its control. The presence of a common ground point in the input section is a feature that can eliminate the leakage current caused by solar cells in photovoltaic applications. Due to the continuity of the input current and the ability to increase the voltage in the proposed structure, it will be possible to track the maximum power point in the application of solar cells. It will be possible to control the effective value of the output voltage of the proposed structure by controlling the duty cycle of the switch of the input section. In this article, the proposed structure is introduced and additional explanations about its different operational modes are provided along with calculations related to loss and efficiency analysis. Also, a comparison between the proposed structure and a number of existing structures is presented. To prove the correct operation of the proposed converter as well as the correctness of theoretical calculations, simulation results extracted from PSCAD/EMTDC software are presented.
Full-Text [PDF 390 kb]   (626 Downloads)    
Type of Article: Research | Subject: Power
Received: 2022/09/7 | Accepted: 2023/04/8 | Published: 2023/08/6

References
1. 1] بنایی، م.، اژدرفائقی بناب، ح.، 1396. ارائه یک مبدل غیر ایزوله DC-DC با ضریب افزایندگی بالا برای کاربرد در انرژی خورشیدی. مهندسی مدیریت انرژی (مدیریت انرژی), [online] 7(1 ), pp.14-29. Available: https://www.sid.ir/fa/journal/ViewPaper.aspx?id=314402.
2. [2] حیدری, خ. کیا, صالحی و میلاد (2020). "ارائه یک مبدل DC-DC جدید غیرایزوله با بهره ولتاژ بالا براساس ساختار SEPIC برای کاربردهای انرژی‌های تجدیدپذیر." مجله مهندسی برق دانشگاه تبریز 50(1): 87-99.
3. [3] Varesi, Kazem, Naser Hassanpour, and Saeid Saeidabadi. "Novel high step‐up DC-DC converter with increased voltage gain per devices and continuous input current suitable for DC microgrid applications." International Journal of Circuit Theory and Applications 48, no. 10 (2020): 1820-1837.
4. [4] Varesi, Kazem, and Mahdi Ghorbani. "A generalized common‐ground single‐switch continuous input‐current boost converter favourable for DC microgrids." International Journal of Circuit Theory and Applications 48, no. 10 (2020): 1658-1675.
5. [5] Kazimierczuk, Marian K. Pulse-width modulated DC-DC power converters. John Wiley & Sons, 2015.
6. [6] Varesi, Kazem, and Amir Ghorbani Esfahlan. "An Enhanced-Gain Quadratic-Boost DC-DC Configuration." In 2020 28th Iranian Conference on Electrical Engineering (ICEE), pp. 1-5. IEEE, 2020.
7. [7] Esfahlan, Amir Ghorbani, Kazem Varesi, and Hossein Madadi Kojabadi. "Simulation and Experimental Validation of An Improved High Step-Up Boost Converter Suitable for Smart Micro-Grids." In 2021 11th Smart Grid Conference (SGC), pp. 1-6. IEEE, 2021.
8. [8] Esfahlan, Amir Ghorbani, and Kazem Varesi. "A New High Step-Up DC-DC Converter Based on Impedance Network." In 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1-5. IEEE, 2021.
9. [9] Axelrod, B., Y. Berkovich and A. Ioinovici (2005). "A cascade boost-switched-capacitor-converter-two level inverter with an optimized multilevel output waveform." IEEE Transactions on Circuits and Systems I: Regular Papers 52(12): 2763-2770.
10. [10] Chan, M. S. and K. Chau (2007). "A new switched-capacitor boost-multilevel inverter using partial charging." IEEE Transactions on Circuits and Systems II: Express Briefs 54(12): 1145-1149.
11. [11] Ahmed, M. E.-S., M. Orabi and O. M. AbdelRahim (2013). "Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications." IET Power Electronics 6(9): 1812-1821.
12. [12] Chang, Y.-H. (2010). "Design and analysis of multistage multiphase switched-capacitor boost DC-AC inverter." IEEE Transactions on Circuits and Systems I: Regular Papers 58(1): 205-218.
13. [13] Nguyen, M.-K., T.-D. Duong and Y.-C. Lim (2017). "Switched-capacitor-based dual-switch high-boost DC-DC converter." IEEE Transactions on Power Electronics 33(5): 4181-4189.
14. [14] Lee, S. S. (2018). "A single-phase single-source 7-level inverter with triple voltage boosting gain." IEEE Access 6: 30005-30011.
15. [15] Lee, S. S., Y. Yang, Y. P. Siwakoti and K.-B. Lee (2020). "A novel boost cascaded multilevel inverter." IEEE Transactions on Industrial Electronics 68(9): 8072-8080.
16. [16] Banaei, M. R., H. Ardi, R. Alizadeh and A. Farakhor (2014). "Non-isolated multi-input-single-output DC/DC converter for photovoltaic power generation systems." IET Power Electronics 7(11): 2806-2816.
17. [17] Uthirasamy, R., U. S. Ragupathy and V. K. Chinnaiyan (2015). "Structure of boost DC-link cascaded multilevel inverter for uninterrupted power supply applications." IET Power Electronics 8(11): 2085-2096.
18. [18] Yang, F., H. Ge, J. Yang and H. Wu (2018). "Dual-input grid-connected photovoltaic inverter with two integrated DC-DC converters and reduced conversion stages." IEEE Transactions on Energy Conversion 34(1): 292-301.
19. [19] Babu, S. M. and B. L. Narasimharaju (2020). "Single-phase boost DC-link integrated cascaded multilevel inverter for PV applications." IET Power Electronics 13(10): 2086-2095.
20. [20] Zhu, T., L. Zhang, R. Gao and L. Qu (2017). "A semi-two-stage dual-buck transformerless PV grid-tied inverter. " 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE.
21. [21] Abramovitz, A., B. Zhao and K. M. Smedley (2015). "High-gain single-stage boosting inverter for photovoltaic applications." IEEE Transactions on Power Electronics 31(5): 3550-3558.
22. [22] Wu, J.-C., H.-L. Jou and Y.-L. Chen (2017). "A grid-tied power conversion interface with a five-level inverter." IET Power Electronics 10(13): 1721-1728.
23. [23] Mu, T., L. Zhu, H. Wu and W. Jiang (2016). "A semi-two-stage DC-AC power conversion system with improved efficiency based on a dual-input inverter. " 2016 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE.
24. [24] Zhang, L., T. Zhang, Y. Hao and B. Wang (2019). "Two-stage dual-buck grid-tied inverters with efficiency enhancement. " 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE.
25. [25] Banaei, M., A. Dehghanzadeh, E. Salary, H. Khounjahan and R. Alizadeh (2012). "Z-source-based multilevel inverter with reduction of switches." IET power electronics 5(3): 385-392.
26. [26] Ardi, H., A. Ajami and M. Sabahi (2017). "A novel high step-up DC-DC converter with continuous input current integrating coupled inductor for renewable energy applications." IEEE transactions on industrial electronics 65(2): 1306-1315.
27. [27] Ajami, A., H. Ardi and A. Farakhor (2014). "Design, analysis and implementation of a buck-boost DC/DC converter." IET Power Electronics 7(12): 2902-2913.
28. [28] Ardi, H., R. R. Ahrabi and S. N. Ravadanegh (2014). "Non-isolated bidirectional DC-DC converter analysis and implementation." IET Power Electronics 7(12): 3033-3044.
29. [29] Ardi, H., A. Ajami, F. Kardan and S. N. Avilagh (2016). "Analysis and implementation of a nonisolated bidirectional DC-DC converter with high voltage gain." IEEE Transactions on Industrial Electronics 63(8): 4878-4888.
30. [30] ESLAMI M, SIADATAN A, JAVANI G R. "Design and Simulation of a DC-DC Converter Interleaved by Using Soft Switching Techniques as an Interface Circuit in Renewable Energy Sources." Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (2) :149-158
31. [31] Mirzaei A, Rezvanyvardom M, Heydari S. Analysis, Design and Implementation of a Non-Isolated Soft Switched Quasi Z-Source DC-DC Converter with High Voltage Gain. Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :13-24
32. [32] Ajami, A., H. Ardi and A. Farakhor (2014). "Design, analysis and implementation of a buck-boost DC/DC converter." IET Power Electronics 7(12): 2902-2913.
33. [33] Tang, Y., D. Fu, T. Wang and Z. Xu (2014). "Hybrid switched-inductor converters for high step-up conversion." IEEE Transactions on Industrial Electronics 62(3): 1480-1490.
34. [34] V. F. Pires, A. Cordeiro, D. Foito, and J. F. Silva, "High step-up DC-DC converter for fuel cell vehicles based on merged quadratic boost-Ćuk," IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7521-7530, 2019.
35. [35] Faeghi bonab H, Banaei M, Ravadanegh S. "Analysis of New Transformerless dc-dc Converter with High Voltage Gain. " Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (1) :133-146

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb