1. [1] Parandin, F., Sheykhian, A., Design and simulation of a 2 × 1 All-Optical multiplexer based on photonic crystals, Optics & Laser Technology, Vol. 151, 2022, 108021. [
DOI:10.1016/j.optlastec.2022.108021]
2. [2] Rafiee, E., Emami, F., Design of a Novel All-Optical Ring Shaped Demultiplexer based on Two-Dimensional Photonic Crystals, Optik, Vol. 140, pp. 873-877, 2017. [
DOI:10.1016/j.ijleo.2017.05.010]
3. [3] Parandin, F., High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals, Opt. Laser Technol., Vol. 113, pp. 447-452, 2019. [
DOI:10.1016/j.optlastec.2019.01.003]
4. ]4[ فصیحی کیازند، ایمانی مریم، طراحی و شبیهسازی دیمالتیپلکسر صوتی 3×1 مبتنی بر کریستالهای فونونی ششضلعی با استفاده از کاواکهای رینگ رزوناتوری، نشریه برق و الکترونیک ایران، جلد 21، شماره 3، پاییز 1403 (در دست چاپ).
5. ]5[ فرمانی علی، بیرانوند رضا، مدلسازی عددی گیت منطقی فردکین مبتنی بر بلور نوری و اثرات غیرخطی در محدوده طول موج مخابراتی 1550 نانومتر، نشریه برق و الکترونیک ایران، سال بیستم، شماره اول، بهار 1402، صفحه 97-105.
6. [6] Rafiee, E., Emami, F., Realization of tunable optical channel drop filter based on photonic crystal octagonal shaped structure, Optik, Vol. 171, pp. 798-802, 2018. [
DOI:10.1016/j.ijleo.2018.06.146]
7. [7] Rafiee, E., et al., Design of a Novel Nano Plasmonic-Dielectric Photonic Crystal Power Splitter Suitable for Photonic Integrated Circuits, Optik, Vol. 172, pp. 234-240, 2018. [
DOI:10.1016/j.ijleo.2018.06.006]
8. [8] Parandin, F., et al., A novel design of all optical half-subtractor using a square lattice photonic crystals, Opt Quant Electron., Vol. 53, 2021, 114. [
DOI:10.1007/s11082-021-02772-8]
9. [9] Parandin, F., et al., Design of 2D photonic crystal biosensor to detect blood Components, Opt Quant Electron, Vol. 54, 2022, 618. [
DOI:10.1007/s11082-022-03945-9]
10. [10] Palai, G., et al., Optical MUX/DEMUX using 3D photonic crystal structure: A future application of silicon photonics, Optik, Vol. 128, pp. 224-227, 2017. [
DOI:10.1016/j.ijleo.2016.10.019]
11. [11] Vahdati, A., Parandin, F., Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz, Wireless Pers. Commun., Vol. 109, pp. 2213-2219, 2019. [
DOI:10.1007/s11277-019-06676-5]
12. [12] Parandin, F., Moayed, M., Designing and simulation of 3-input majority gate based on two-dimensional photonic crystals, Optik, Vol. 216, 2020, 164930. https://doi.org/ 10.1016/j.ijleo.2020.164930.
https://doi.org/10.1016/j.ijleo.2020.164930 [
DOI:10.1016/j.ijleo.2020.164930.]
13. [13] Parandin, F., Ultra-compact terahertz all-optical logic comparator on GaAs photonic crystal platform, Opt. Laser Technol., Vol. 144, 2021, 107399. https://doi.org/ 10.1016/j.optlastec.2021.107399 [
DOI:10.1016/j.optlastec.2021.107399]
14. [14] Parandin, F., et al., Two-dimensional photonic crystal Biosensors: A review, Opt. Laser Technol., Vol. 144, 2021, 107397.
https://doi.org/10.1016/j.optlastec.2021.107397 [
DOI:10.1016/j.optlastec.2021.107397.]
15. [15] Askarian, A., Design and analysis of all optical 2 × 4 decoder based on kerr effect and beams interference procedure, Opt Quant Electron., Vol. 53, 2021, 291. [
DOI:10.1007/s11082-021-02987-9]
16. ]16[یوسفی هاشم آباد راضیه، فصیحی کیازند، طراحی و شبیه سازی حسگر دمای بلور فوتونی حساسیت بالا مبتنی بر کاواک پر شده با آب مقطر، نشریه برق و الکترونیک ایران، دوره هجدهم، شماره اول، بهار 1400، صفحه 101-108.
17. ]17[ نوروزی سعیده، فصیحی کیازند، طراحی و شبیه سازی حسگر فشارمبتنی بر یک تیغه بلور فوتونی دو بعدی از جنس PbMoO4، نشریه برق و الکترونیک ایران، دوره هجدهم، شماره اول، بهار 1400، صفحه 109-116.
18. [18] Rafiee, E., et al., Cancer Cell Detection Biosensor Based on Graphene‑Plasmonic Split Square‑Ring‑Shaped Nanostructure, Plasmonics. Vol. 18, pp. 431-440, 2023. [
DOI:10.1007/s11468-022-01777-7]
19. [19] Negahdari, R., et al., A Sensitive Biosensor Based on Plasmonic‑Graphene Configuration for Detection of COVID‑19 Virus, Plasmonics, Vol. 18, pp. 1325-1335, 2023. [
DOI:10.1007/s11468-023-01851-8]
20. [20] Chahkoutahi, A., et al., Sensitive Hemoglobin Concentration Sensor Based on Graphene‑Plasmonic Nano‑structures, Plasmonics, Vol. 17, pp. 423-431, 2022. [
DOI:10.1007/s11468-021-01531-5]
21. [21] Negahdari, R., et al., Sensitive MIM plasmonic biosensors for detection of hemoglobin, creatinine and cholesterol concentrations, Diamond & Related Materials, Vol. 136, 2023, 110029. [
DOI:10.1016/j.diamond.2023.110029]
22. [22] Panda, A., et al., Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection, Appl. Phys. A., Vol. 126, 2020. DOI:10.1007/s00339-020-3328-8. [
DOI:10.1007/s00339-020-3328-8]
23. [23] Aly, A. H., et al., Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal, RSC Adv., Vol. 10, 2020, 31765.
https://doi.org/10.1039/D0RA05448H [
DOI:10.1039/D0RA05448H.]
24. [24] Jin, Y. L., et al., Refractive index measurement for biomaterial samples by total internal reflection, Phys Med Biol., Vol. 51, pp. 371-379, 2006. [
DOI:10.1088/0031-9155/51/20/N02]
25. [25] Billett, H. H., Hemoglobin and Hematocrit. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods, The History, Physical, and Laboratory Examinations. Boston: Butterworths Publishers, a division of Reed Publishing, 1990.
26. [26] Turner, J., et al., StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Meghana Parsi declares no relevant financial relationships with ineligible companies. Disclosure: Madhu Badireddy declares no relevant financial relationships with ineligible companies, StatPearls Publishing LLC., 2023.
27. [27] Das, S., et al., Highly sensitive PCF based plasmonic biosensor for hemoglobin concentration detection, Photonics and Nanostructures - Fundamentals and Applications, Vol. 51, 2022, 101040. [
DOI:10.1016/j.photonics.2022.101040]
28. [28] Ansari, G., et al., Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor, Optics & Laser Technology, Vol. 164, 2023, 109495. [
DOI:10.1016/j.optlastec.2023.109495]
29. [29] Rafiee E., A 2-D based photonic crystal biosensor for efficient diagnosis of anemia and kidney failure, Opt. Mater., Vol. 149, 2024, 115154 [
DOI:10.1016/j.optmat.2024.115154]
30. [30] Rafique, B., et al., Creatinine Imprinted Photonic Crystals Hydrogel Sensor, Arabian Journal of Chemistry, Vol. 16, 2023, 104684. [
DOI:10.1016/j.arabjc.2023.104684]
31. [31] Sharifi, H., et al., Sensing blood components and cancer cells with photonic crystal resonator biosensor, Results in Optics, Vol. 14, 2024, 100593. [
DOI:10.1016/j.rio.2023.100593]
32. [32] Yashaswini, P.R., et al., Design and simulation of a highly sensitive one-dimensional photonic crystal for different chemical sensing applications, Results in Optics, Vol. 11, 2023, 100376. [
DOI:10.1016/j.rio.2023.100376]
33. [33] Gao, Y. F., et al., Design of novel power splitters by directional coupling between photonic crystal waveguides, Optoelectron. Lett., Vol. 6, pp. 417-420, 2010. [
DOI:10.1007/s11801-010-0017-4]
34. [34] Elyasi, B., Javahernia, S., All optical digital multiplexer using nonlinear photonic crystal ring resonators, JOPN., Vol. 7, no, 1, pp. 97- 106, 2022.
35. [35] Olyaee, s., et al., Two-curve-shaped biosensor using photonic crystal nano-ring resonators., JNS., Vol. 4, pp. 303-308, 2014.
36. ]36[ پرندین فریبرز، حیدری فرصاد ، طراحی و شبیه سازی یک حسگر زیستی مبتنی بر نانو حلقه تشدیدگر دایرهای با استفاده از بلورهای فوتونی دوبعدی، نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- مهندسی برق، سال ،18شماره ،2تابستان 1399.
37. [37] Rahman M. S., et al., Enhanced Performance of SnSe-Graphene Hybrid Photonic Surface Plasmon Refractive Sensor for Biosensing Applications, Photonics Nanostructures: Fundam. Appl, Vol. 39, 2020. [
DOI:10.1016/j.photonics.2020.100779]
38. [38] Sharma, A. K., Gupt, J., Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood, Opt. Fiber Technol., Vol. 41, pp. 125-130, 2018. [
DOI:10.1016/j.yofte.2018.01.012]
39. [39] Chorsi, H. T., et al., Tunable plasmonic substrates with ultrahigh Q-factor resonances, Sci. Rep., Vol. 7, 2017, 15985. [
DOI:10.1038/s41598-017-16288-3]
40. [40] Dey, B., et al., Numerical design of high-performance WS2/metal/WS2/graphene heterostructure based surface plasmon resonance refractive index sensor, Res. Phys., Vol. 23, 2021, 104021. [
DOI:10.1016/j.rinp.2021.104021]
41. [41] Ye, Y., et al., Highly sensitive and tunable terahertz biosensor based on optical Tamm states in graphene-based Bragg reflector, Res. Phys., Vol. 15, 2019, 102779. [
DOI:10.1016/j.rinp.2019.102779]
42. [42] Gandhi, S., et al., Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum, RSC Adv., Vol. 11, pp. 26655-26665, 2021. [
DOI:10.1039/D1RA04166E]
43. [43] Bijalwan. A., et al., Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells, Optik, Vol. 226, 2021, 165994. [
DOI:10.1016/j.ijleo.2020.165994]