Volume 22, Issue 1 (JIAEEE Vol.22 No.1 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(1): 91-97 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rafiee E. Design of an Optical Biosensor based on 2-D Photonic Crystal Structure for Diagnosis of Anemia and Acute Kidney Injury. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :91-97
URL: http://jiaeee.com/article-1-1727-en.html
Alzahra university
Abstract:   (835 Views)
In this research, a biosensor based on 2-D photonic crystals is proposed. The presented structure is made of 25*20 Si rods in the air background. Photonic bandgap and field distribution spectra are extracted considering plane wave expansion (PWE) and FDTD methods, respectively. After applying the incident signal, light wave would be propagated along the waveguide and would be transferred to outputs 1 or 2 regarding the resonant wavelength. Output 1 is considered for detection of hemoglobin concentrations in blood samples with Q-factor: (140-168), sensitivity: 1745nm/RIU, FOM: (166.1-190.7) RIU-1, and detection limit (DL): (5.2e-4 – 6.01e-4) RIU. Output 2 can also be considered for detection of creatinine concentrations in blood samples with Q-factor: (130.4-137.76), sensitivity: 1435.8nm/RIU, FOM: (110.8-126.74) RIU-1, and detection limit (DL): (7.8-4 – 8.86e-4) RIU. Considering the obtained results, physicians can diagnose anemia and acute kidney injuries in early stages and with high precisions. Finally, the proposed biosensor can be a remarkable candidate for detection of hemoglobin and creatinine in optical integrated circuits.
Full-Text [PDF 1189 kb]   (106 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2024/06/7 | Accepted: 2024/11/5 | Published: 2025/05/29

References
1. [1] Parandin, F., Sheykhian, A., Design and simulation of a 2 × 1 All-Optical multiplexer based on photonic crystals, Optics & Laser Technology, Vol. 151, 2022, 108021. [DOI:10.1016/j.optlastec.2022.108021]
2. [2] Rafiee, E., Emami, F., Design of a Novel All-Optical Ring Shaped Demultiplexer based on Two-Dimensional Photonic Crystals, Optik, Vol. 140, pp. 873-877, 2017. [DOI:10.1016/j.ijleo.2017.05.010]
3. [3] Parandin, F., High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals, Opt. Laser Technol., Vol. 113, pp. 447-452, 2019. [DOI:10.1016/j.optlastec.2019.01.003]
4. ]4[ فصیحی کیازند، ایمانی مریم، طراحی و شبیه‌سازی دی‌مالتی‌پلکسر صوتی 3×1 مبتنی بر کریستال‌های فونونی شش‌ضلعی با استفاده از کاواک‌های رینگ رزوناتوری، نشریه برق و الکترونیک ایران، جلد 21، شماره 3، پاییز 1403 (در دست چاپ).
5. ]5[ فرمانی علی، بیرانوند رضا، مدلسازی عددی گیت منطقی فردکین مبتنی بر بلور نوری و اثرات غیرخطی در محدوده طول موج مخابراتی 1550 نانومتر، نشریه برق و الکترونیک ایران، سال بیستم، شماره اول، بهار 1402، صفحه 97-105.
6. [6] Rafiee, E., Emami, F., Realization of tunable optical channel drop filter based on photonic crystal octagonal shaped structure, Optik, Vol. 171, pp. 798-802, 2018. [DOI:10.1016/j.ijleo.2018.06.146]
7. [7] Rafiee, E., et al., Design of a Novel Nano Plasmonic-Dielectric Photonic Crystal Power Splitter Suitable for Photonic Integrated Circuits, Optik, Vol. 172, pp. 234-240, 2018. [DOI:10.1016/j.ijleo.2018.06.006]
8. [8] Parandin, F., et al., A novel design of all optical half-subtractor using a square lattice photonic crystals, Opt Quant Electron., Vol. 53, 2021, 114. [DOI:10.1007/s11082-021-02772-8]
9. [9] Parandin, F., et al., Design of 2D photonic crystal biosensor to detect blood Components, Opt Quant Electron, Vol. 54, 2022, 618. [DOI:10.1007/s11082-022-03945-9]
10. [10] Palai, G., et al., Optical MUX/DEMUX using 3D photonic crystal structure: A future application of silicon photonics, Optik, Vol. 128, pp. 224-227, 2017. [DOI:10.1016/j.ijleo.2016.10.019]
11. [11] Vahdati, A., Parandin, F., Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz, Wireless Pers. Commun., Vol. 109, pp. 2213-2219, 2019. [DOI:10.1007/s11277-019-06676-5]
12. [12] Parandin, F., Moayed, M., Designing and simulation of 3-input majority gate based on two-dimensional photonic crystals, Optik, Vol. 216, 2020, 164930. https://doi.org/ 10.1016/j.ijleo.2020.164930. https://doi.org/10.1016/j.ijleo.2020.164930 [DOI:10.1016/j.ijleo.2020.164930.]
13. [13] Parandin, F., Ultra-compact terahertz all-optical logic comparator on GaAs photonic crystal platform, Opt. Laser Technol., Vol. 144, 2021, 107399. https://doi.org/ 10.1016/j.optlastec.2021.107399 [DOI:10.1016/j.optlastec.2021.107399]
14. [14] Parandin, F., et al., Two-dimensional photonic crystal Biosensors: A review, Opt. Laser Technol., Vol. 144, 2021, 107397. https://doi.org/10.1016/j.optlastec.2021.107397 [DOI:10.1016/j.optlastec.2021.107397.]
15. [15] Askarian, A., Design and analysis of all optical 2 × 4 decoder based on kerr effect and beams interference procedure, Opt Quant Electron., Vol. 53, 2021, 291. [DOI:10.1007/s11082-021-02987-9]
16. ]16[یوسفی هاشم آباد راضیه، فصیحی کیازند، طراحی و شبیه سازی حسگر دمای بلور فوتونی حساسیت بالا مبتنی بر کاواک پر شده با آب مقطر، نشریه برق و الکترونیک ایران، دوره هجدهم، شماره اول، بهار 1400، صفحه 101-108.
17. ]17[ نوروزی سعیده، فصیحی کیازند، طراحی و شبیه سازی حسگر فشارمبتنی بر یک تیغه بلور فوتونی دو بعدی از جنس PbMoO4، نشریه برق و الکترونیک ایران، دوره هجدهم، شماره اول، بهار 1400، صفحه 109-116.
18. [18] Rafiee, E., et al., Cancer Cell Detection Biosensor Based on Graphene‑Plasmonic Split Square‑Ring‑Shaped Nanostructure, Plasmonics. Vol. 18, pp. 431-440, 2023. [DOI:10.1007/s11468-022-01777-7]
19. [19] Negahdari, R., et al., A Sensitive Biosensor Based on Plasmonic‑Graphene Configuration for Detection of COVID‑19 Virus, Plasmonics, Vol. 18, pp. 1325-1335, 2023. [DOI:10.1007/s11468-023-01851-8]
20. [20] Chahkoutahi, A., et al., Sensitive Hemoglobin Concentration Sensor Based on Graphene‑Plasmonic Nano‑structures, Plasmonics, Vol. 17, pp. 423-431, 2022. [DOI:10.1007/s11468-021-01531-5]
21. [21] Negahdari, R., et al., Sensitive MIM plasmonic biosensors for detection of hemoglobin, creatinine and cholesterol concentrations, Diamond & Related Materials, Vol. 136, 2023, 110029. [DOI:10.1016/j.diamond.2023.110029]
22. [22] Panda, A., et al., Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection, Appl. Phys. A., Vol. 126, 2020. DOI:10.1007/s00339-020-3328-8. [DOI:10.1007/s00339-020-3328-8]
23. [23] Aly, A. H., et al., Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal, RSC Adv., Vol. 10, 2020, 31765. https://doi.org/10.1039/D0RA05448H [DOI:10.1039/D0RA05448H.]
24. [24] Jin, Y. L., et al., Refractive index measurement for biomaterial samples by total internal reflection, Phys Med Biol., Vol. 51, pp. 371-379, 2006. [DOI:10.1088/0031-9155/51/20/N02]
25. [25] Billett, H. H., Hemoglobin and Hematocrit. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods, The History, Physical, and Laboratory Examinations. Boston: Butterworths Publishers, a division of Reed Publishing, 1990.
26. [26] Turner, J., et al., StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Meghana Parsi declares no relevant financial relationships with ineligible companies. Disclosure: Madhu Badireddy declares no relevant financial relationships with ineligible companies, StatPearls Publishing LLC., 2023.
27. [27] Das, S., et al., Highly sensitive PCF based plasmonic biosensor for hemoglobin concentration detection, Photonics and Nanostructures - Fundamentals and Applications, Vol. 51, 2022, 101040. [DOI:10.1016/j.photonics.2022.101040]
28. [28] Ansari, G., et al., Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor, Optics & Laser Technology, Vol. 164, 2023, 109495. [DOI:10.1016/j.optlastec.2023.109495]
29. [29] Rafiee E., A 2-D based photonic crystal biosensor for efficient diagnosis of anemia and kidney failure, Opt. Mater., Vol. 149, 2024, 115154 [DOI:10.1016/j.optmat.2024.115154]
30. [30] Rafique, B., et al., Creatinine Imprinted Photonic Crystals Hydrogel Sensor, Arabian Journal of Chemistry, Vol. 16, 2023, 104684. [DOI:10.1016/j.arabjc.2023.104684]
31. [31] Sharifi, H., et al., Sensing blood components and cancer cells with photonic crystal resonator biosensor, Results in Optics, Vol. 14, 2024, 100593. [DOI:10.1016/j.rio.2023.100593]
32. [32] Yashaswini, P.R., et al., Design and simulation of a highly sensitive one-dimensional photonic crystal for different chemical sensing applications, Results in Optics, Vol. 11, 2023, 100376. [DOI:10.1016/j.rio.2023.100376]
33. [33] Gao, Y. F., et al., Design of novel power splitters by directional coupling between photonic crystal waveguides, Optoelectron. Lett., Vol. 6, pp. 417-420, 2010. [DOI:10.1007/s11801-010-0017-4]
34. [34] Elyasi, B., Javahernia, S., All optical digital multiplexer using nonlinear photonic crystal ring resonators, JOPN., Vol. 7, no, 1, pp. 97- 106, 2022.
35. [35] Olyaee, s., et al., Two-curve-shaped biosensor using photonic crystal nano-ring resonators., JNS., Vol. 4, pp. 303-308, 2014.
36. ]36[ پرندین فریبرز، حیدری فرصاد ، طراحی و شبیه سازی یک حسگر زیستی مبتنی بر نانو حلقه تشدیدگر دایرهای با استفاده از بلورهای فوتونی دوبعدی، نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- مهندسی برق، سال ،18شماره ،2تابستان 1399.
37. [37] Rahman M. S., et al., Enhanced Performance of SnSe-Graphene Hybrid Photonic Surface Plasmon Refractive Sensor for Biosensing Applications, Photonics Nanostructures: Fundam. Appl, Vol. 39, 2020. [DOI:10.1016/j.photonics.2020.100779]
38. [38] Sharma, A. K., Gupt, J., Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood, Opt. Fiber Technol., Vol. 41, pp. 125-130, 2018. [DOI:10.1016/j.yofte.2018.01.012]
39. [39] Chorsi, H. T., et al., Tunable plasmonic substrates with ultrahigh Q-factor resonances, Sci. Rep., Vol. 7, 2017, 15985. [DOI:10.1038/s41598-017-16288-3]
40. [40] Dey, B., et al., Numerical design of high-performance WS2/metal/WS2/graphene heterostructure based surface plasmon resonance refractive index sensor, Res. Phys., Vol. 23, 2021, 104021. [DOI:10.1016/j.rinp.2021.104021]
41. [41] Ye, Y., et al., Highly sensitive and tunable terahertz biosensor based on optical Tamm states in graphene-based Bragg reflector, Res. Phys., Vol. 15, 2019, 102779. [DOI:10.1016/j.rinp.2019.102779]
42. [42] Gandhi, S., et al., Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum, RSC Adv., Vol. 11, pp. 26655-26665, 2021. [DOI:10.1039/D1RA04166E]
43. [43] Bijalwan. A., et al., Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells, Optik, Vol. 226, 2021, 165994. [DOI:10.1016/j.ijleo.2020.165994]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb