XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi Amiri S, Andi M. Classification of Pistachio Varieties Using MobileNet Deep Learning Model. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :133-140
URL: http://jiaeee.com/article-1-1725-en.html
University of Mazandaran
Abstract:   (660 Views)
Pistachio, a flowering plant from the Anacardiaceae family, is categorized into various types based on its physical characteristics. Due to its high market value and nutritional importance, accurate identification and packaging based on the pistachio variety are essential for addressing export challenges. Pistachio classification is often performed by electromechanical machines, but these machines lack the necessary precision and can damage the pistachio kernels. Therefore, there is a growing demand for new technologies to improve pistachio classification and separation. In this study, we used a modified version of the MobileNetV3 deep learning model to identify different pistachio varieties. Additionally, by leveraging the Small version of MobileNet, we can efficiently deploy the trained model on smartphones, as it is optimized for computational efficiency. The research was conducted using a dataset of 2148 images representing the Kerman and Sirt pistachio varieties. To increase the number and diversity of images, data augmentation techniques were applied. This helps prevent overfitting and enables the model to generalize better to unseen data. Our modified MobileNetV3 model achieved an accuracy of 99.30% in identifying the two pistachio varieties, outperforming existing classification methods.
 
Full-Text [PDF 693 kb]   (116 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2024/06/2 | Accepted: 2024/09/16 | Published: 2025/05/29

References
1. [1] Dreher, Mark L., "Pistachio nuts: composition and potential health benefits," Nutrition Reviews, Vol. 70, No. 4, pp. 234-240, 2012. [DOI:10.1111/j.1753-4887.2011.00467.x]
2. [2] Mateos, Raquel, et al., "Why should pistachio be a regular food in our diet?" Nutrients, Vol. 14, No. 15, p. 3207, 2022. [DOI:10.3390/nu14153207]
3. [3] Ozkan, I.A., Koklu, M., Saraçoğlu, R., "Classification of Pistachio Species Using Improved K-NN Classifier," Health, Vol. 23, p. e2021044, 2021.
4. [4] Kay, C.D., Gebauer, S.K., West, S.G., Kris-Etherton, P.M., "Pistachios Increase Serum Antioxidants and Lower Serum Oxidized-LDL in Hypercholesterolemic Adults," The Journal of Nutrition, Vol. 140, No. 6, pp. 1093-1098, 2010. [DOI:10.3945/jn.109.117366]
5. [5] Bonifazi, G., Capobianco, G., Gasbarrone, R., Serranti, S., "Contaminant detection in pistachio nuts by different classification methods applied to short-wave infrared hyperspectral images," Food Control, Vol. 130, p. 108202, 2021. [DOI:10.1016/j.foodcont.2021.108202]
6. [6] Sheikhi, Abdollatif, et al., "Pistachio (Pistacia spp.) breeding," Advances in Plant Breeding Strategies: Nut and Beverage Crops: Volume 4, pp. 353-400, 2019. [DOI:10.1007/978-3-030-23112-5_10]
7. [7] آقائی نسترن، اکبری زاده غلامرضا، کوثریان عبدالنبی. استفاده از ShuffleNet برای طراحی یک مدل بخش‌بندی معنایی عمیق به منظور تشخیص نشت نفت در تصاویر رادار روزنه مصنوعی. نشریه مهندسی برق و الکترونیک ایران. ۱۴۰۱; ۱۹ (۳) :۱۳۱-۱۴۴.
8. [8] Atay, Ü., "The investigation of classification systems used for pistachio and construction of an alternative classification system," Ph.D. Thesis, Harran University, Sanliurfa, 2007.
9. [9] سهرابی محمدصادق، معظمی مجید. یک روش ترکیبی برای پیش ‌بینی احتمالاتی میان-مدت قیمت برق با استفاده از یادگیری عمیق. نشریه مهندسی برق و الکترونیک ایران. ۱۴۰۲; ۲۰ (۴) :۱۲۳-۱۳۲.
10. [10] Omid, M., Firouz, M.S., Nouri-Ahmadabadi, H., Mohtasebi, S.S., "Classification of peeled pistachio kernels using computer vision and color features," Engineering in Agriculture, Environment and Food, Vol. 10, pp. 259-265, 2017. [DOI:10.1016/j.eaef.2017.04.002]
11. [11] Singh, Dilbag, et al., "Classification and analysis of pistachio species with pre-trained deep learning models," Electronics, Vol. 11, No. 7, p. 981, 2022. [DOI:10.3390/electronics11070981]
12. [12] Dheir, I.M., Mettleq, A.S.A., Elsharif, A.A., "Nuts Types Classification Using Deep Learning," International Journal of Academic Information Systems Research, Vol. 3, pp. 12-17, 2020.
13. [13] Abbaszadeh, M., Rahimifard, A., Eftekhari, M., Zadeh, H.G., Fayazi, A., Dini, A., Danaeian, M., "Deep Learning-Based Classification of the Defective Pistachios via Deep Autoencoder Neural Networks," arXiv, arXiv:1906.11878, 2019.
14. [14] Dini, A., Zadeh, H.G., Rahimifard, A., Fayazi, A., Eftekhari, M., Abbaszadeh, M., "Designing a Hardware System to Separate Defective Pistachios From Healthy Ones Using Deep Neural Networks," Iranian Journal of Biosystems Engineering, Vol. 51, pp. 149-159, 2020.
15. [15] Casasent, D.A., Sipe, M.A., Schatzki, T.F., Keagy, P.M., Lee, L.C., "Neural net classification of X-ray pistachio nut data," LWT-Food Science and Technology, Vol. 31, No. 2, pp. 122-128, 1998. [DOI:10.1006/fstl.1997.0320]
16. [16] Cetin, A.E., Pearson, T.C., Tewfik, A.H., "Classification of closed and open shell pistachio nuts using principal component analysis of impact acoustics," Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. V-677, 2004. [DOI:10.1109/ICASSP.2004.1327201]
17. [17] Shorten, Connor, Khoshgoftaar, Taghi M., "A survey on image data augmentation for deep learning," Journal of Big Data, Vol. 6, No. 1, pp. 1-48, 2019. [DOI:10.1186/s40537-019-0197-0]
18. [18] Qian, Siying, Ning, Chenran, Hu, Yuepeng, "MobileNetV3 for image classification," Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), IEEE, pp. 490-497, 2021. [DOI:10.1109/ICBAIE52039.2021.9389905]
19. [19] Howard, Andrew, et al., "Searching for mobilenetv3," Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314-1324, 2019. [DOI:10.1109/ICCV.2019.00140]
20. [20] Hastie, Trevor, et al., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, New York: Springer, 2009.
21. [21] Cleophas, Ton J., et al., Machine Learning in Medicine-A Complete Overview, Cham; Heidelberg: Springer International Publishing, 2015. [DOI:10.1007/978-3-319-15195-3]
22. [22] Müller, Andreas C., Guido, Sarah, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, Inc., 2016.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb