Volume 22, Issue 1 (JIAEEE Vol.22 No.1 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(1): 57-64 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari H, Daghighi A, Shafaghat E. Simulation of CMOS Fabrication Processes for Double-Insulating Silicon-on-Diamond MOSFET. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :57-64
URL: http://jiaeee.com/article-1-1708-en.html
Shahrekord University
Abstract:   (702 Views)
In this article, for the first time, simulation of CMOS fabrication processes for double-insulating silicon-on-diamond MOSFET is discussed. The fabrication process suitable for 22-nanometer feature size and the presence of two main insulating layers, are implemented according to the standard steps of CMOS processes. The diamond layer, as the first electrical insulator, has high thermal conductivity, which enables the application of this structure for high power and cryogenic operation. Due to the presence of silicon dioxide as the second electrical insulator, some of the main electrical characteristics of the transistor, such as threshold voltage, unity-gain cut-off frequency, on-current, and short channel effects are improved. Therefore, the threshold voltage of 0.225 V, on-current as 0.045 mA/um and unity-gain cut-off frequency of 370 GHz was extracted. The simulation results demonstrate the superiority of the structure compared with conventional silicon-on-insulator technologies of semiconductor devices.
Full-Text [PDF 1063 kb]   (101 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2024/03/18 | Accepted: 2024/07/29 | Published: 2025/05/29

References
1. [1] J. D. Plummer, Silicon VLSI technology: fundamentals, practice and modeling. Pearson Education India, 2009.
2. [2] D. Li, W. Lin, Q. Wang, X. Lv, T. Zhang, and L. Li, "Trenched diamond PN junction diode with enhanced conductance modulation effect designed by simulation", Microelectronics Journal, vol. 139, p. 105903, 2023. [DOI:10.1016/j.mejo.2023.105903]
3. [3] C. Fiegna, Y. Yang, E. Sangiorgi, and A. G. O'Neill, "Analysis of self-heating effects in ultrathin-body SOI MOSFETs by device simulation", IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 233-244, 2007. [DOI:10.1109/TED.2007.911354]
4. [4] J. Zimmer and G. Chandler, "GaN on SOD Substrates-The Next Step in Thermal Control", in CS MANTECH Conference, 2007: Citeseer, pp. 129-132.
5. [5] K. Raleva, D. Vasileska, and S. M. Goodnick, "Is SOD technology the solution to heating problems in SOI devices?", IEEE Electron Device Letters, vol. 29, no. 6, pp. 621-624, 2008. [DOI:10.1109/LED.2008.920756]
6. [6] A. Daghighi and A. Farajzadeh, "Investigation of Temperature Effects in 45nm Silicon-on-Diamond MOSFET Transistor", Majlesi Journal of Electrical Engineering, vol. 3, no. 4, 2009.
7. [7] G. Song, Y. Wang, and D. Q. Tan, "A review of surface roughness impact on dielectric film properties", ed: Wiley Online Library, 2022.
8. [8] A. Priya and R. A. Mishra, "A two dimensional analytical modeling of surface potential in triple metal gate (TMG) fully-depleted Recessed-Source/Drain (Re-S/D) SOI MOSFET", Superlattices and Microstructures, vol. 92, pp. 316-329, 2016. [DOI:10.1016/j.spmi.2016.01.041]
9. [9] N. Ghobadi and A. Afzali-Kusha, "Investigation and Modeling of Negative Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI) Induced Degradation in Multi-Gate Nano-Devices", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 12, no. 2, pp. 1-14, 2015.
10. [10] W. Ke, X. Han, D. Li, X. Liu, R. Han, and S. Zhang, "Recessed source/drain for scaling SOI MOSFET to the limit", in 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2006: IEEE, pp. 84-86. [DOI:10.1109/ICSICT.2006.306084]
11. [11] B. Vandana, "Study of floating body effect in SOI technology", Int. J. Mod. Eng. Res, vol. 3, no. 3, pp. 1817-1824, 2013.
12. [12] J.-P. Mazellier, O. Faynot, S. Cristoloveanu, S. Deleonibus, and P. Bergonzo, "Integration of diamond in fully-depleted silicon-on-insulator technology as buried insulator: A theoretical analysis", Diamond and related materials, vol. 17, no. 7-10, pp. 1248-1251, 2008. [DOI:10.1016/j.diamond.2008.03.026]
13. [13] A. Daghighi, "A novel structure to improve DIBL in fully-depleted silicon-on-diamond substrate", Diamond and related materials, vol. 40, pp. 51-55, 2013. [DOI:10.1016/j.diamond.2013.10.010]
14. [14] A. Daghighi, "Double insulating silicon on diamond device", ed: Google Patents, 2015.
15. [15] K. K. Young, "Analysis of conduction in fully depleted SOI MOSFETs", IEEE transactions on Electron Devices, vol. 36, no. 3, pp. 504-506, 1989. [DOI:10.1109/16.19960]
16. [16] A. Daghighi and A. Dadkhah, "A capacitance model for threshold voltage computation of double-insulating fully-depleted silicon-on-diamond MOSFET", The European Physical Journal Plus, vol. 138, no. 12, pp. 1-10, 2023. [DOI:10.1140/epjp/s13360-023-04758-9]
17. [17] A. Daghighi, J. Hoseini-Teshnizi, and G. Amini, "A Novel Silicon on Diamond Structure to Improve Drain Induced Barrier Lowering", Majlesi Journal of Electrical Engineering, vol. 7, no. 1, 2013.
18. [18] Z. Sepehri and A. Daghighi, "Analytical Threshold Voltage Computations for 22 nm Silicon-on-Diamond MOSFET Incorporating a Second Oxide Layer", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 16, no. 2, pp. 57-64, 2019.
19. [19] S. Cristoloveanu, "The SOI Transistor", 75th Anniversary of the Transistor, pp. 115-133, 2023. [DOI:10.1002/9781394202478.ch11]
20. [20] A. Rashid, "Review of:"(Field effect nano transistors) Nano transistor electronic quantity and ionization potential)", Qeios. doi: 10.32388/464lg7, 2023. [DOI:10.32388/464LG7]
21. [21] X. Huang, C. Zhou, B. Wu, Z. Geng, and X. Zhang, "Wafer-scale polishing of polycrystalline MPACVD-diamond", Surfaces, vol. 5, no. 1, pp. 155-164, 2022. [DOI:10.3390/surfaces5010008]
22. [22] J. Ahopelto et al., "NanoElectronics roadmap for Europe: From nanodevices and innovative materials to system integration", Solid-State Electronics, vol. 155, pp. 7-19, 2019. [DOI:10.1016/j.sse.2019.03.014]
23. [23] Y. Song et al., "Relationship between Co-related optical centres and nitrogen impurities in large single crystals of diamond grown in Co-C system under HPHT conditions", CrystEngComm, vol. 25, no. 3, pp. 357-364, 2023. [DOI:10.1039/D2CE01197B]
24. [24] J. Liu et al., "Carrier mobility enhancement on the H-terminated diamond surface", Diamond and Related Materials, vol. 104, p. 107750, 2020. [DOI:10.1016/j.diamond.2020.107750]
25. [25] Z. Ren et al., "Diamond field effect transistors with MoO 3 gate dielectric", IEEE Electron Device Letters, vol. 38, no. 6, pp. 786-789, 2017. [DOI:10.1109/LED.2017.2695495]
26. [26] H. Umezawa, T. Matsumoto, and S.-I. Shikata, "Diamond metal-semiconductor field-effect transistor with breakdown voltage over 1.5 kV", IEEE Electron Device Letters, vol. 35, no. 11, pp. 1112-1114, 2014. [DOI:10.1109/LED.2014.2356191]
27. [27] Z. Hoseini and A. Daghighi, "Investigation and simulation of the effect of Substrate Doping on the Switching Delay of 22nm Double-Insulating UTBB SOI MOSFET", Journal of Iranian Association of Electrical and Electronics Engineers, 2021. [DOI:10.29252/jiaeee.18.1.37]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb