Volume 22, Issue 1 (JIAEEE Vol.22 No.1 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(1): 25-31 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salahi R, Moezzi M. Investigation of delay linear estimation in self-image-guided ultrasound technique at different focal distances. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :25-31
URL: http://jiaeee.com/article-1-1684-en.html
Amirkabir University of Technology
Abstract:   (656 Views)
Precise beam steering to implants is crucial for accurate location determination using a phased array. The self-image-guided ultrasonic (SIG-US) technique offers a localization approach where the implant initially transmits pulses outside the body. These pulses are then received by a transducer array with varying delays. By measuring these delays, reversing them, and applying them in transmitter mode, the beam can be accurately steered towards the implant's location. In this paper, two linear estimation methods for the SIG-US technique are introduced. In the first method, measurements are performed only at the first transducer and the multiples of 8 transducers. In the second method, measurements are performed at the first transducer and the multiples of 4 transducers, and other delays are obtained from their linear approximation. Simulation results show that regardless of the number of array elements, the first method has a power loss of less than 0.8% compared to the ideal SIG-US method for focal distances greater than 40 mm. The second method has a power loss of less than 0.3% for distances of 20 to 50 mm. Both mentioned methods can track the implant location by reducing the number of measurements and power consumption compared to the traditional SIG-US method.

 
Full-Text [PDF 544 kb]   (99 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2023/12/26 | Accepted: 2024/11/5 | Published: 2025/05/29

References
1. [1] J. Chen, J. Xu, A new coil structure for implantable wireless charging system, J. Biomed. Signal. Process. Control. Vol. 68, 2021. [DOI:10.1016/j.bspc.2021.102693]
2. [2] Sh Yazdanifard, R.A. Sadeghzadeh, Investigation of dual-band antenna with low-SAR characteristics for bidirectional brain-machine interface applications, J. Biomed. Signal. Process. Control. Vol. 70, 2021. [DOI:10.1016/j.bspc.2021.102978]
3. [3] S. Reddy, L. He, S. Ramakrishana, Miniaturized-electroneurostimulators and self powered/rechargeable implanted devices for electrical-stimulation therapy, J. Biomed. Signal. Process. Control. Vol. 41, 255-263, 2018. [DOI:10.1016/j.bspc.2017.11.018]
4. [4] D. Seo, J. Carmena, J. Rabaey, M. Maharbiz, E. Alon, Model validation of untethered, ultrasonic neural dust motes for cortical recording, J. Neurosci. Meth. Vol. 244, pp. 114-122, 2015. [DOI:10.1016/j.jneumeth.2014.07.025]
5. [5] M. Meng, M. Kiani, Gastric seed: towards distributed ultrasonically interrogated millimeter-sized implants for large-scale gastric electrical-wave recording, IEEE Trans. Circuit Syst. II, Vol. 66, No. 5, pp. 1549-7747, 2019. [DOI:10.1109/TCSII.2019.2908072]
6. [6] Weber, Y. Yoshihara, A. Sawaby, J. Charthad, T. Chang, A. Arbabian, A miniaturized single-transducer implantable pressure sensor with time-multiplexed ultrasonic data and power links, IEEE J. Solid-State Circuit, Vol. 53, No. 4, pp. 1089-1101, 2018. [DOI:10.1109/JSSC.2017.2782086]
7. [7] V. Tseng, S. Bedair, N. Lazarus, Phased array focusing for acoustic wireless power transfer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 65, No. 1, pp. 39-49, 2018. [DOI:10.1109/TUFFC.2017.2771283]
8. [8] D.K. Piech, B.C. Johnson, K. Shen, et al., A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication, Nat. Biomed. Eng., Vol. 4, No. 2, pp. 207-222, 2020. [DOI:10.1038/s41551-020-0518-9]
9. [9] J. Charthad, et al., A mm-sized wireless implantable device for electrical stimulation of peripheral nerves, IEEE Trans. Biomed. Circuit Syst., Vol. 12, No. 2, pp. 257-270, 2018. [DOI:10.1109/TBCAS.2018.2799623]
10. [10] M.L. Wang, T.C. Chang, T. Teisberg, M.J. Weber, J. Charthad, A. Arbabian, Closed-loop ultrasonic power and communication with multiple miniaturized active implantable medical devices, in: IEEE Int. Ultrasonics Symp., pp. 1-4, 2017. [DOI:10.1109/ULTSYM.2017.8092116]
11. [11] B. C. Benedict et al., Time reversal beamforming for powering ultrasonic implants, 10th Int. IEEE/EMBS Conf. Neural Eng. (NER), pp. 647-650, 2021. [DOI:10.1109/NER49283.2021.9441162]
12. [12] S. J. Ilham and M. Kiani, Towards High-Resolution Ultrasound Neuromod ulation With Crossed-Beam Phased Arrays, IEEE Trans. Biomed. Circuits Syst, vol. 17, No. 3, pp. 534-546, 2023. [DOI:10.1109/TBCAS.2023.3285724]
13. [13] T. Costa, C. Shi, K. Tien, J. Elloian, F. A. Cardoso and K. L. Shepard, An Integrated 2D Ultrasound Phased Array Transmitter in CMOS With Pixel Pitch Matched Beamforming, IEEE Trans. Biomed. Circuits Syst, Vol. 15, No. 4, pp. 731-742, 2021. [DOI:10.1109/TBCAS.2021.3096722]
14. [14] B. C. Benedict, M. M. Ghanbari and R. Muller, Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants, IEEE Trans. Ultra sonics, Ferroelectr. Freq. Control, Vol. 69, No. 17, pp. 2756-2765, 2022. [DOI:10.1109/TUFFC.2022.3197705]
15. [15] M. L. Wang, A. Singhvi, G. Nyikayaramba, B. Murmann and A. Arbabian, Adaptive Beamforming for Wireless Powering of a Network of Ultrasonic Implants, IEEE Int. Ultrasonics. Symposium (IUS), pp. 1-4, 2022. [DOI:10.1109/IUS54386.2022.9958008]
16. [16] Z. Kashani, S. J. Ilham and M. Kiani, Design and Optimization of Ultrasonic Links With Phased Arrays for Wireless Power Transmission to Biomedical Implants, IEEE Trans. Biomed. Circuits Syst, Vol. 16, No. 1, pp. 64-78, 2022. [DOI:10.1109/TBCAS.2022.3140591]
17. [17] Y. Zhang and K. L. Shepard, A 0.6-mmˆ2 Powering and Data Telemetry System Compatible with Ultrasound B-Mode Imaging for Freely Moving Biomedical Sensor Systems, IEEE Cust. Integr. Circuits Conf. (CICC), pp. 1-4, 2019. [DOI:10.1109/CICC.2019.8780205]
18. [18] ] M. L. Wang, T. C. Chang, and A. Arbabian, Ultrasonic implant localization for wireless power transfer: Active uplink and harmonic backscatter, IEEE Int. Ultrasonics Symp., pp. 818-821, 2019. [DOI:10.1109/ULTSYM.2019.8926006]
19. [19] M. Meng, M. Kiani, Self-image-guided ultrasonic wireless power transmission to millimeter-sized biomedical implants, 41th Annu. Int. Conf. IEEE Eng. Medicine and Biol. Soc., pp. 364-367, 2019. [DOI:10.1109/EMBC.2019.8857559]
20. [20] Z. Kashani, M. Kiani, Optimal ultrasonic pulse transmission for miniaturized biomedical implants, in: IEEE Biomed. Cir. and Syts. Conf, pp. 1-4, 2019. [DOI:10.1109/BIOCAS.2019.8918704]
21. [21] R. Salahi, M. Moezzi, H.Ghafoorifard, M. Kiani, Systematic investigation of self-image-guided ultrasonic transceiver using time interval measurements for wireless power transfer, J. Biomed. Signal. Process. Control., Vol. 81, 2023. [DOI:10.1016/j.bspc.2022.104482]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb