Volume 22, Issue 1 (JIAEEE Vol.22 No.1 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(1): 1-9 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Imani M, Fasihi K. Design and simulation of 1×4 phononic crystals based acoustic demultiplexers with square and triangular lattices. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :1-9
URL: http://jiaeee.com/article-1-1665-en.html
Golestan university & Faculty of Engineering, Golestan University
Abstract:   (728 Views)
Phononic crystals consist of periodic distributions of scatterers in a host matrix. Destructive interference of several scattered waves leads to the appearance of the most prominent characteristic of phononic crystals, namely the phononic band gap. Using these crystals and creating defects in its periodicity, these crystals can be used in various applications such as filters, lenses, waveguides, demultiplexers, sensors, etc. In this study, we present two 2D phononic crystals with square and triangular lattices of water cylinders in mercury. To simulate the proposed devices, plane wave expansion method and finite element method in Comsol multiphysics software are used. The resonant frequencies of the proposed 1×4  demultiplexer with square lattice are 66.09, 68.23, 70.27 and 72.49 KHz. In this structure the mean of quality factors is 3042, the minimum crosstalk is -42 dB, and the dimensions of the structure is 218×118 15 mm2" id="_x0000_i1027" src="" style="width:24.9pt; height:12.75pt" > 15 mm2" id="_x0000_i1025" src="" style="width:24.9pt; height:12.75pt" > . The resonant frequencies of the second proposed 1×4 demultiplexer with triangular lattice are 75.69, 74.98, 74.26 and 73.57 KHz. In this structure the mean quality factor is 6326, the minimum crosstalk is -34 dB, and the dimensions of the structure is 103×297 15mm2" id="_x0000_i1028" src="" style="width:22.7pt; height:12.75pt" > 15mm2" id="_x0000_i1026" src="" style="width:22.7pt; height:12.75pt" > . Both proposed structures are superior in terms of dimensions, ease of construction and performance parameters.
Full-Text [PDF 1330 kb]   (113 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2023/11/18 | Accepted: 2024/11/30 | Published: 2025/05/29

References
1. [1] Taleb, F., Darbari, S., & Khelif, A. (2021). Reconfigurable locally resonant surface acoustic demultiplexing behavior in ZnO-based phononic crystal. Journal of Applied Physics, 129(2). [DOI:10.1063/5.0024485]
2. [2] Khelif, A., Djafari-Rouhani, B., Vasseur, J. O., Deymier, P. A., Lambin, P., & Dobrzynski, L. (2002). Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Physical Review B, 65(17), 174308. [DOI:10.1103/PhysRevB.65.174308]
3. [3] Khelif, A., Djafari-Rouhani, B., Vasseur, J. O., & Deymier, P. A. (2003). Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Physical Review B, 68(2), 024302. [DOI:10.1103/PhysRevB.68.024302]
4. [4] Gharibi, H., & Bahrami, A. (2020). Phononic crystals for sensing FAMEs with demultiplexed frequencies. Journal of Molecular Liquids, 305, 112841. [DOI:10.1016/j.molliq.2020.112841]
5. [5] Moradi, P., Gharibi, H., Fard, A. M., & Mehaney, A. (2021). Four-channel ultrasonic demultiplexer based on two-dimensional phononic crystal towards high efficient liquid sensor. Physica Scripta, 96(12), 125713. [DOI:10.1088/1402-4896/ac2c23]
6. [6] Qiu, C., Liu, Z., Shi, J., & Chan, C. T. (2005). Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Applied Physics Letters, 86(22). [DOI:10.1063/1.1942642]
7. [7] Bahrami, A., Alinejad-Naini, M., & Motaei, F. (2021). A proposal for 1× 4 phononic switch/demultiplexer using composite lattices. Solid State Communications, 326, 114179. [DOI:10.1016/j.ssc.2020.114179]
8. [8] Shakeri, A., Darbari, S., & Moravvej-Farshi, M. K. (2019). Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal. Ultrasonics, 92, 8-12. [DOI:10.1016/j.ultras.2018.09.001]
9. [9] Sigalas, M. M. (1992). Elastic and acoustic wave band structure. Journal of sound and vibration, 158(2), 377-382. [DOI:10.1016/0022-460X(92)90059-7]
10. [10] Motaei, F., & Bahrami, A. (2020). Eight-channel acoustic demultiplexer based on solid-fluid phononic crystals with hollow cylinders. Photonics and Nanostructures-Fundamentals and Applications, 39, 100765. [DOI:10.1016/j.photonics.2020.100765]
11. [11] Rostami-Dogolsara, B., Moravvej-Farshi, M. K., & Nazari, F. (2016). Designing switchable phononic crystal-based acoustic demultiplexer. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 63(9), 1468-1473. [DOI:10.1109/TUFFC.2016.2586489]
12. [12] Rostami-Dogolsara, B., Moravvej-Farshi, M. K., & Nazari, F. (2019). Designing phononic crystal based tunable four-channel acoustic demultiplexer. Journal of Molecular Liquids, 281, 100-107. [DOI:10.1016/j.molliq.2019.02.066]
13. [13] T. Fang, X. Sun 1, X. Wen, Y. Li 1, X. Liu 1, T. Song, Y. Song, Z. Liu, "High‑performance phononic crystal sensing structure for acetone solu tion concentration sensing," Scientific Reports, vol. 13, no. 1, p.7057, 2023. [DOI:10.1038/s41598-023-34226-4]
14. ]14[ مریم ایمانی، کیازند فصیحی، "طراحی و شبیه‌سازی دی‌مالتی‌پلکسر صوتی 3×1 مبتنی بر کریستال‌های فونونی شش‌ضلعی با استفاده از کاواک‌های رینگ رزوناتوری"، نشریه مهندسی برق و الکترونیک، جلد 21، شماره 3، مهر 1403.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb