XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghifam M, Hoseinpour M. Differentially Private Local Electricity Markets with Personalized Privacy Protection. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :99-111
URL: http://jiaeee.com/article-1-1607-en.html
Tarbiat Modares University
Abstract:   (915 Views)
Publicly releasing local electricity markets data brings a multitude of economic as well as technical and societal benefits. Moreover, public access to these data is instrumental for achieving transparency and more competition in local electricity markets. However, privacy-aware market participants have concerns about the leakage of their private information via releasing of the local electricity market outputs. This paper aims to design a mechanism for local electricity markets that provably guarantees the privacy of market participants and also reflects their privacy preferences by implementing differential privacy. First, the required randomization for achieving differential privacy is embedded in the optimization process of the market-clearing problem via noisy gradient ascent algorithm. Then, for providing personalized level of privacy protection, a subsampling mechanism over the input dataset of the market-clearing problem. In numerical studies, the inherent trade-off between the privacy protection and social welfare in the market is investigated under different privacy regimes.
Full-Text [PDF 1287 kb]   (289 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/06/16 | Accepted: 2024/07/5 | Published: 2025/01/11

References
1. [1] ضیائی، رشیدی‌نژاد، عبداللهی، پیرمرادی، "یک معماری برای برنامه‌ریزی تولید در بازار تجدیدساختار شده با زیرساخت اینترنت اشیاء"، نشریه مهندسی برق و الکترونیک ایران، دوره ۱۹، صفحات ۱۶۱-۱۷۵، تهران، ۱۴۰۱.
2. [2] عمادالاسلامی، مجیدی، حقی‌فام "ارائه یک مدل دومرحله‌ای جهت تشخیص تقلب در شبکه توزیع به‌وسیله یادگیری عمیق"، نشریه مهندسی برق و الکترونیک ایران، دوره ۱۹، صفحات ۱۳-۲۲، تهران، ۱۴۰۱.
3. [3] گیلانی، سالک. فریدونیان، "مدلسازی داده‌رانه مدت زمان تداوم وقفه در شبکه توزیع برق با در نظر گرفتن نگهداری و تعمیرات پیشگیرانه و تحلیل اثر آن"، نشریه مهندسی برق و الکترونیک ایران، دوره ۱۹، صفحات ۱-۱۱، تهران، ۱۴۰۱.
4. [4] Y. Yang, M. Bao, Y. Ding, Y. Song, Z. Lin, and C. Shao, "Review of Information Disclosure in Different Electricity Markets", Energies (Basel), vol. 11, no. 12, p. 3424, 2018. [DOI:10.3390/en11123424]
5. [5] D. Brown, A. Eckert, and J. Lin, "Information and Transparency in Wholesale Electricity Markets: Evidence from Alberta", SSRN Electronic Journal, vol. 54, pp. 292-330, 2018. [DOI:10.1007/s11149-018-9372-z]
6. [6] M. Rhahla, S. Allegue, and T. Abdellatif, "Guidelines for GDPR compliance in Big Data systems", Journal of Information Security and Applications, vol. 61, p. 102896, 2021. [DOI:10.1016/j.jisa.2021.102896]
7. [7] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa, "An MPC-based privacy-preserving protocol for a local electricity trading market", in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), doi: 10.1007/978-3-319-48965-0_40, 2016. [DOI:10.1007/978-3-319-48965-0_40]
8. [8] Y. Lu, J. Lian, M. Zhu, and K. Ma, "Transactive Energy System Deployment over Insecure Communication Links", doi: arXiv preprint arXiv:2008.00152, 2020.
9. [9] R. Sarenche, M. Salmasizadeh, M. H. Ameri, and M. R. Aref, "A secure and privacy-preserving protocol for holding double auctions in smart grid", Inf Sci (N Y), vol. 557, 2021. [DOI:10.1016/j.ins.2020.12.038]
10. [10] K. Erdayandi, A. Paudel, L. Cordeiro, and M. A. Mustafa, "Privacy- friendly peer-to-peer energy trading: A game theoretical approach", arXiv preprint, doi: arXiv:2201.01810, 2022. [DOI:10.1109/PESGM48719.2022.9916884]
11. [11] S. Xie, H. Wang, Y. Hong, and M. Thai, "Privacy preserving distributed energy trading", in Proceedings - International Conference on Distributed Computing Systems, pp. 322-332, 2020. [DOI:10.1109/ICDCS47774.2020.00078] []
12. [12] F. Zobiri, M. Gama, S. Nikova, and G. Deconinck, "A Privacy-Preserving Three-Step Demand Response Market Using Multi-Party Computation", in 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), IEEE, pp. 1-5, 2022. [DOI:10.1109/ISGT50606.2022.9817546]
13. [13] M. Montakhabi, A. Madhusudan, S. van der Graaf, A. Abidin, P. Ballon, and M. A. Mustafa, "Sharing Economy in Future Peer-to-peer Electricity Trading Markets: Security and Privacy Analysis", Energy Sources, Part B: Economics, Planning, and Policy, vol. 17, 2022.
14. [14] E. Buchmann, S. Kessler, P. Jochem, and K. Bohm, "The costs of privacy in local energy markets", in Proceedings - 2013 IEEE International Conference on Business Informatics, IEEE CBI 2013, pp. 198-207, 2013. [DOI:10.1109/CBI.2013.36]
15. [15] L. Wu and J. Li, "Privacy-Preserving Economic Dispatch in Competitive Electricity Market", in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, pp. 1-5, 2018. [DOI:10.1109/TDC.2018.8440468]
16. [16] I. Shilov, H. le Cadre, and A. Busic, "Privacy impact on generalized Nash equilibrium in peer-to-peer electricity market", Operations Research Letters, vol. 49, no. 5, 2021. [DOI:10.1016/j.orl.2021.08.001]
17. [17] I. Dekel, R. Cummings, O. Heffetz, and K. Ligett, "The Privacy Elasticity of Behavior: Conceptualization and Application", Cambridge, MA, doi: 10.3386/w30215, 2022. [DOI:10.3386/w30215]
18. [18] J. P. Near and X. He, "Differential Privacy for Databases", Foundations and Trends® in Databases, vol. 11, no. 2, pp. 109-225, 2021. [DOI:10.1561/1900000066]
19. [19] S. Vadhan, "The complexity of differential privacy", in Information Security and Cryptography, pp. 347-450, 2017. [DOI:10.1007/978-3-319-57048-8_7]
20. [20] M. Abadi et al., "Deep learning with differential privacy", in Proceedings of the ACM Conference on Computer and Communications Security, pp. 308-318, 2016. [DOI:10.1145/2976749.2978318]
21. [21] B. Niu, Y. Chen, B. Wang, Z. Wang, F. Li, and J. Cao, "AdaPDP: Adaptive Personalized Differential Privacy", in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, IEEE, pp. 1-10., 2021. [DOI:10.1109/INFOCOM42981.2021.9488825]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb