Volume 21, Issue 2 (JIAEEE Vol.21 No.2 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(2): 75-86 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarparast-Razmju M, barakati S M, Azghandi M A. Using Selective Harmonic Elimination Method in αβ Reference Frame and Series RC Damper to Improve the Performance of Modular Current Source Active Filters. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :75-86
URL: http://jiaeee.com/article-1-1579-en.html
Department of Electrical and Computer Engineering, University of Sistan and Baluchestan
Abstract:   (1113 Views)
The current source converter offers several superior features such as inherent voltage increase and direct current control, which makes it attractive in active filters as an interface converter between the power source and the nonlinear load. Among the challenges of active current source filters, we can mention the determination of the appropriate reference signal, the design of the current controller, the inherent resonance problem of the passive filter used in the active filter output, and increasing the rated power of the active filter. In this article, to calculate the compensation signal produced by the active filter, a simple and efficient method called selective harmonic elimination method in the αβ reference frame is proposed, and considering that the current and voltage signals in the αβ reference frame are of AC type, a resonant controller is used, which It has the ability to delete selected harmony. To remove the inherent resonance of the virtual passive admittance filter based on resistive-capacitive (RC) series damper, which has better performance and a wider stability range, is proposed. The reactivity method is used to analyze the stability and adjust the characteristics of the damper. To increase the rated power of the filter, the modular structure of the active current source filter is used. Finally, to show the effectiveness of the proposed method, a simulation has been carried out in the Simulink MATLAB environment for four current source filters.
 
Full-Text [PDF 1812 kb]   (231 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/03/5 | Accepted: 2023/07/29 | Published: 2024/06/24

References
1. [1] H. Singh, M. Kour, D. V. Thanki, and P. Kumar, "A Review on Shunt Active Power Filter Control Strategies A Review on Shunt Active Power Filter Control Strategies", no. September, 2018, doi: 10.14419/ijet.v7i4.5.20026. [DOI:10.14419/ijet.v7i4.5.20026]
2. [2] H. Liu, H. Hu, H. Chen, L. Zhang, and Y. Xing, "Fast and Flexible Selective Harmonic Extraction Methods Based on the Generalized Discrete Fourier Transform", IEEE Trans. Power Electron., vol. 33, no. 4, pp. 3484-3496, Apr. 2018, doi: 10.1109/TPEL.2017.2703138. [DOI:10.1109/TPEL.2017.2703138]
3. [3] I. K. Otchere, D. O. Ampofo, and E. A. Frimpong, "A 2nd order LPF wavelet based control scheme for shunt active power filter", Proc. - 2017 IEEE PES-IAS PowerAfrica Conf. Harnessing Energy, Inf. Commun. Technol. Afford. Electrif. Africa, PowerAfrica 2017, pp. 444-448, Jul. 2017, doi: 10.1109/POWERAFRICA.2017.7991267. [DOI:10.1109/PowerAfrica.2017.7991267]
4. [4] M. Büyük, M. İnci, A. Tan, and M. Tümay, "Improved instantaneous power theory based current harmonic extraction for unbalanced electrical grid conditions", Electr. Power Syst. Res., vol. 177, p. 106014, Dec. 2019, doi: 10.1016/J.EPSR.2019.106014. [DOI:10.1016/j.epsr.2019.106014]
5. [5] R. Kumar Patjoshi, R. Panigrahi, and V. Ratnam Kolluru, "Variable nonlinear gain fuzzy with improved synchronous reference frame control strategy for performance enhancement of unified power quality conditioner", Ain Shams Eng. J., vol. 12, no. 1, pp. 739-753, Mar. 2021, doi: 10.1016/J.ASEJ.2020.04.004. [DOI:10.1016/j.asej.2020.04.004]
6. [6] H. Karimi, M. Karimi-Ghartemani, M. R. Iravani, and A. R. Bakhshai, "An adaptive filter for synchronous extraction of harmonics and distortions", IEEE Trans. Power Deliv., vol. 18, no. 4, pp. 1350-1356, Oct. 2003, doi: 10.1109/TPWRD.2003.817752. [DOI:10.1109/TPWRD.2003.817752]
7. [7] M. Qasim and V. Khadkikar, "Application of artificial neural networks for shunt active power filter control", IEEE Trans. Ind. Informatics, vol. 10, no. 3, pp. 1765-1774, 2014, doi: 10.1109/TII.2014.2322580. [DOI:10.1109/TII.2014.2322580]
8. ]8[ حسینی، س. م. و نوروزیان، ر. "ارایه روشی ترکیبی نوین بر اساس نسل دوم تبدیل موجک و روش جابجایی فرکانس ساندیا برای تشخیص کارکرد جزیره ای در تولیدات پراکنده مبتنی بر اینورتر"، نشریه مهندسی برق و الکترونیک ایران, vol. 13, no. 1, pp. 21-34, 2016, Accessed: Aug. 03, 2023. [Online]. Available: https://jiaeee.com/article-1-76-fa.html
9. [9] Z. Bai, H. Ma, D. Xu, B. Wu, Y. Fang, and Y. Yao, "Resonance damping and harmonic suppression for grid-connected current-source converter", IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3146-3154, 2014, doi: 10.1109/TIE.2013.2281173. [DOI:10.1109/TIE.2013.2281173]
10. ]10[ موحدی تبار، ع. و منفرد، م. "طراحی کنترل‌کننده دو حلقه‌ای برای فیلتر فعال تک فاز موازی بدون سنسور با خروجی LCL با در نظر گرفتن تأخیر محاسبات و مدولاسیون"، نشریه مهندسی برق و الکترونیک ایران, vol. 14, no. 1, pp. 127-138, 2017, Accessed: Aug. 03, 2023. [Online]. Available: https://jiaeee.com/article-1-335-fa.html
11. [11] Y. W. Li, "Control and resonance damping of voltage-source and current-source converters with LC filters", IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1511-1521, 2009, doi: 10.1109/TIE.2008.2009562. [DOI:10.1109/TIE.2008.2009562]
12. [12] T. Liu, J. Liu, Z. Liu, and Z. Liu, "A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters", IEEE Trans. Power Electron., vol. 35, no. 1, pp. 247-262, Jan. 2020, doi: 10.1109/TPEL.2019.2911163. [DOI:10.1109/TPEL.2019.2911163]
13. [13] J. Wang, J. D. Yan, L. Jiang, and J. Zou, "Delay-Dependent Stability of Single-Loop Controlled Grid-Connected Inverters with LCL Filters", IEEE Trans. Power Electron., vol. 31, no. 1, pp. 743-757, Jan. 2016, doi: 10.1109/TPEL.2015.2401612. [DOI:10.1109/TPEL.2015.2401612]
14. [14] A. Akhavan, H. R. Mohammadi, J. C. Vasquez, and J. M. Guerrero, "Passivity-Based Design of Plug-and-Play Current-Controlled Grid-Connected Inverters", IEEE Trans. Power Electron., vol. 35, no. 2, pp. 2135-2150, Feb. 2020, doi: 10.1109/TPEL.2019.2920843. [DOI:10.1109/TPEL.2019.2920843]
15. [15] Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, "Grid-current-feedback control for LCL-filtered grid converters with enhanced stability", IEEE Trans. Power Electron., vol. 32, no. 4, pp. 3216-3228, Apr. 2017, doi: 10.1109/TPEL.2016.2580543. [DOI:10.1109/TPEL.2016.2580543]
16. [16] X. Wang, F. Blaabjerg, and P. C. Loh, "Virtual RC Damping of LCL-Filtered Voltage Source Converters With Extended Selective Harmonic Compensation", IEEE Trans. Power Electron., vol. 30, no. 9, 2015, doi: 10.1109/TPEL.2014.2361853. [DOI:10.1109/TPEL.2014.2361853]
17. [17] A. Akhavan, H. R. Mohammadi, and J. M. Guerrero, "Modeling and design of a multivariable control system for multi-paralleled grid-connected inverters with LCL filter", Int. J. Electr. Power Energy Syst., vol. 94, 2018, doi: 10.1016/j.ijepes.2017.07.016. [DOI:10.1016/j.ijepes.2017.07.016]
18. [18] C. Yoon, H. Bai, R. N. Beres, X. Wang, C. L. Bak, and F. Blaabjerg, "Harmonic stability assessment for multiparalleled, grid-connected inverters", IEEE Trans. Sustain. Energy, vol. 7, no. 4, 2016, doi: 10.1109/TSTE.2016.2551737. [DOI:10.1109/TSTE.2016.2551737]
19. [19] H. Bai, X. Wang, P. C. Loh, and F. Blaabjerg, "Passivity enhancement of grid-tied converters by series LC-filtered active damper", IEEE Trans. Ind. Electron., vol. 64, no. 1, 2017, doi: 10.1109/TIE.2016.2562604. [DOI:10.1109/TIE.2016.2562604]
20. [20] H. Bai, X. Wang, and F. Blaabjerg, "Passivity Enhancement in Renewable Energy Source Based Power Plant with Paralleled Grid-Connected VSIs", IEEE Trans. Ind. Appl., vol. 53, no. 4, 2017, doi: 10.1109/TIA.2017.2685363. [DOI:10.1109/TIA.2017.2685363]
21. [21] X. Wang, L. Harnefors, and F. Blaabjerg, "Unified Impedance Model of Grid-Connected Voltage-Source Converters", IEEE Trans. Power Electron., vol. 33, no. 2, 2018, doi: 10.1109/TPEL.2017.2684906. [DOI:10.1109/TPEL.2017.2684906]
22. [22] L. Harnefors, R. Finger, X. Wang, H. Bai, and F. Blaabjerg, "VSC Input-Admittance Modeling and Analysis above the Nyquist Frequency for Passivity-Based Stability Assessment", IEEE Trans. Ind. Electron., vol. 64, no. 8, 2017, doi: 10.1109/TIE.2017.2677353. [DOI:10.1109/TIE.2017.2677353]
23. [23] J. He and B. Liang, "Selective harmonic compensation using active power filter with enhanced double-loop controller", in 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, 2016. doi: 10.1109/IPEMC.2016.7512727. [DOI:10.1109/IPEMC.2016.7512727] [PMID]
24. [24] M. Ali Azghandi, S. Masoud Barakati, and A. Yazdani, "Passivity-Based Design of a Fractional-Order Virtual Capacitor for Active Damping of Multiparalleled Grid-Connected Current-Source Inverters", IEEE Trans. Power Electron., vol. 37, no. 7, 2022, doi: 10.1109/TPEL.2022.3148242. [DOI:10.1109/TPEL.2022.3148242]
25. [25] M. Ali Azghandi, S. Masoud Barakati, and A. Yazdani, "Impedance-Based Stability Analysis and Design of a Fractional-Order Active Damper for Grid-Connected Current-Source Inverters", IEEE Trans. Sustain. Energy, vol. 12, no. 1, 2021, doi: 10.1109/TSTE.2020.3013697. [DOI:10.1109/TSTE.2020.3013697]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb