XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hatami A, GanjKhani I. Long-term Voltage Stability Assessment of an Integrated Transmission Distribution System based on LSTM recurrent neural network. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :123-133
URL: http://jiaeee.com/article-1-1543-en.html
Department of Electrical Engineering, Bu-Ali Sina University
Abstract:   (893 Views)
In this paper, a new method based on long-short-term memory neural networks is proposed for predicting long-term voltage instability in interconnected transmission and distribution networks. Using the online information of the phasor measurement units, the neural network estimates the stability of the network voltage and in case of any event in the network, it estimates the long-term voltage stability status using the information before and after the event. This structure can be used as an auxiliary tool to quickly inform the network operator of possible risks caused by voltage instability after any contingency in the network. The simulation results of different case studies in offline-mode have been used to create the training dataset. In order to have different case studies, considering load growth in areas prone to voltage instability, (N-1) and (N-1-1) contingency have been simulated. Nordic extended network has been used to evaluate the proposed neural network performance. By using the appropriate time shift, the occurrence of all contingencies has been moved to the tenth second so that the neural network only learn the trajectory of the features. The accuracy of the neural network in the 17th second (7 seconds after contingency) is 99.05%. Finally, the effect of reducing the input dimensions by clustering the data has been investigated.
 
Full-Text [PDF 1488 kb]   (232 Downloads)    
Type of Article: Research | Subject: Power
Received: 2022/12/26 | Accepted: 2023/07/4 | Published: 2025/01/11

References
1. [1] B. Petroleum, "Statistical Review of World Energy globally consistent data on world energy markets . and authoritative publications in the field of energy", BP Energy Outlook 2021, vol. 70, pp. 8-20, 2021.
2. [2] P. Kundur et al., "Definition and classification of power system stability", IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387-1401, 2004, doi: 10.1109/TPWRS.2004.825981. [DOI:10.1109/TPWRS.2004.825981]
3. [3] A. Muir, J. L.--Canada P. S. O. T. Force, undefined Canada, and undefined 2004, "Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations", osti.gov, Accessed: Nov. 30, 2020. [Online]. Available: https://www.osti.gov/etdeweb/biblio/20461178.
4. [4] Z. Li, Q. Guo, H. Sun, J. Wang, Y. Xu, and M. Fan, "A Distributed Transmission-Distribution-Coupled Static Voltage Stability Assessment Method Considering Distributed Generation", IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2621-2632, 2018, doi: 10.1109/TPWRS.2017.2762473. [DOI:10.1109/TPWRS.2017.2762473]
5. [5] NERC (North American Electric Reliability Corp.), "Essential Reliability Services Task Force Measures Framework Report", Nerc, no. November, pp. 1-129, 2015.
6. [6] A. Zegers and H. Brunner, "TSO-DSO interaction: An Overview of current interaction between transmission and distribution system operators and an assessment of their cooperation in Smart Grids", Int. Smart Grid Action Netw. Discuss. Pap. Annex, vol. 6, pp. 2-32, 2014.
7. [7] S. Corsi, G. N. Taranto, and S. Member, "A Real-Time Voltage Instability Identification Algorithm Based on Local Phasor Measurements", vol. 23, no. 3, pp. 1271-1279, 2008. [DOI:10.1109/TPWRS.2008.922586]
8. [8] I. Smon, G. Verbic, and F. Gubina, "Local voltage-stability index using Tellegen's theorem," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1267-1275, 2006. [DOI:10.1109/TPWRS.2006.876702]
9. ]9[ اسدی، حامد. صنایع‫پسند، مجید. داورپناه، مهدی "معرفی یک روش جدید برای تخمین به هنگام ناپایداری ولتاژ در شبکه های قدرت بر مبنای حفاظت گسترده شبکه"، مجله انجمن مهندسین برق و الکترونیک ایران، سال چهارم، شماره دوم، ص 03-13 ، پاییز 01386
10. [10] M. Glavic and T. Van Cutsem, "Wide-area detection of voltage instability from synchronized phasor measurements. Part I: Principle", IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1408-1416, 2009, doi: 10.1109/TPWRS.2009.2023271. [DOI:10.1109/TPWRS.2009.2023271]
11. [11] L. Bao, Z. Huang, and W. Xu, "Online Voltage Stability Monitoring Using Var Reserves", IEEE Trans. Power Syst., vol. 18, no. 4, pp. 1461-1469, 2003, doi: 10.1109/TPWRS.2003.818706. [DOI:10.1109/TPWRS.2003.818706]
12. [12] M. Kamel, A. A. Karrar, and A. H. Eltom, "Development and Application of a New Voltage Stability Index for On-Line Monitoring and Shedding", IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1231-1241, 2018, doi: 10.1109/TPWRS.2017.2722984. [DOI:10.1109/TPWRS.2017.2722984]
13. ]13[ رجائیان، عرفان. زینلی داورانی، روح الامین. "جایابی و تعیین ظرفیت بهینه هیبرید منابع تولید پراکنده جهت تامین بار، استفاده بهینه از منابع تجدیدپذیر، کاهش هزینه های خالص فعلی و بهبود پایداری ولتاژ شبکه"، مجله انجمن مهندسین برق و الکترونیک ایران، سال بیستم، شماره دوم، ص 19-27 ، زمستان 01401
14. [14] T. Wang, T. Bi, H. Wang, and J. Liu, "Decision tree based online stability assessment scheme for power systems with renewable generations", CSEE J. Power Energy Syst., vol. 1, no. 2, pp. 53-61, 2015, doi: 10.17775/cseejpes.2015.00019. [DOI:10.17775/CSEEJPES.2015.00019]
15. [15] H. Yang, R. C. Qiu, and H. Tong, "Reconstruction Residuals Based Long-term Voltage Stability Assessment Using Autoencoders", J. Mod. Power Syst. Clean Energy, vol. 8, no. 6, pp. 1092-1103, 2020, doi: 10.35833/MPCE.2020.000526. [DOI:10.35833/MPCE.2020.000526]
16. [16] K. D. Dharmapala, A. Rajapakse, K. Narendra, and Y. Zhang, "Machine Learning Based Real-Time Monitoring of Long-Term Voltage Stability Using Voltage Stability Indices", IEEE Access, vol. 8, pp. 222544-222555, 2020, doi: 10.1109/ACCESS.2020.3043935. [DOI:10.1109/ACCESS.2020.3043935]
17. [17] H. Y. Su and H. H. Hong, "An Intelligent Data-Driven Learning Approach to Enhance Online Probabilistic Voltage Stability Margin Prediction", IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3790-3793, 2021, doi: 10.1109/TPWRS.2021.3067150. [DOI:10.1109/TPWRS.2021.3067150]
18. [18] O. A. Alimi, K. Ouahada, and A. M. Abu-Mahfouz, "A Review of Machine Learning Approaches to Power System Security and Stability", IEEE Access, vol. 8, pp. 113512-113531, 2020, doi: 10.1109/ACCESS.2020.300. [DOI:10.1109/ACCESS.2020.3003568]
19. [19] H. Hagmar, L. Tong, R. Eriksson, and L. A. Tuan, "Voltage Instability Prediction Using a Deep Recurrent Neural Network", IEEE Trans. Power Syst., vol. 36, no. 1, pp. 17-27, 2021, doi: 10.1109/TPWRS.2020.3008801. [DOI:10.1109/TPWRS.2020.3008801]
20. [20] Z. Li, Q. Guo, H. Sun, and J. Wang, "Impact of Coupled Transmission-Distribution on Static Voltage Stability Assessment", IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3311-3312, 2017, doi: 10.1109/TPWRS.2016.2631896. [DOI:10.1109/TPWRS.2016.2631896]
21. [21] K. Tang, S. Dong, C. Zhu, and Y. Song, "Affine Arithmetic-Based Coordinated Interval Power Flow of Integrated Transmission and Distribution Networks", IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4116-4132, 2020, doi: 10.1109/TSG.2020.2991210. [DOI:10.1109/TSG.2020.2991210]
22. [22] R. Venkatraman, S. K. Khaitan, and V. Ajjarapu, "Dynamic Co-Simulation Methods for Combined Transmission-Distribution System with Integration Time Step Impact on Convergence", IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1171-1181, 2019, doi: 10.1109/TPWRS.2018.2874807. [DOI:10.1109/TPWRS.2018.2874807]
23. [23] L. D. P. Ospina and T. Van Cutsem, "Emergency Support of Transmission Voltages by Active Distribution Networks: A Non-Intrusive Scheme", IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3887-3896, 2021, doi: 10.1109/TPWRS.2020.3027949. [DOI:10.1109/TPWRS.2020.3027949]
24. [24] A. R. Ramapuram Matavalam, A. Singhal, and V. Ajjarapu, "Monitoring long term voltage instability due to distribution and transmission interaction using unbalanced μ PMU and PMU measurements", IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 873-883, 2020, doi: 10.1109/TSG.2019.2917676. [DOI:10.1109/TSG.2019.2917676]
25. [25] A. Singhal and V. Ajjarapu, "Long-term voltage stability assessment of an integrated transmission distribution system", 2017 North Am. Power Symp. NAPS 2017, 2017, doi: 10.1109/NAPS.2017.8107402. [DOI:10.1109/NAPS.2017.8107402] []
26. [26] T. Van Cutsem et al., "Test Systems for Voltage Stability Studies: IEEE Task Force on Test Systems for Voltage Stability Analysis and Security Assessment", IEEE Trans. Power Syst., no. August, pp. 1-1, 2020, doi: 10.1109/tpwrs.2020.2976834. [DOI:10.1109/TPWRS.2020.2976834]
27. [27] L. D. P. Ospina, A. F. Correa, and G. Lammert, "Implementation and validation of the Nordic test system in DIgSILENT PowerFactory", 2017 IEEE Manchester PowerTech, Powertech 2017, 2017, doi: 10.1109/PTC.2017.7980933. [DOI:10.1109/PTC.2017.7980933] [PMID]
28. [28] K. Strunz, C. Abbey, C. Andrieu, R. C. Campbell, and R. Fletcher, Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources, no. July. 2009.
29. [29] S. Barsali, Benchmark systems for network integration of renewable and distributed energy resources. 2014.
30. [30] "Western Electricity Coordinating Council (WECC) Renewable Energy Modeling Task Force. (2014, Apr) WECC solar plant dynamic modeling guidelines", [Online]. Available: available: https://www.wecc.biz/Reliability/WECC%0ASolar Plant Dynamic Modeling Guidelines.pdf.
31. [31] and M. B. G. Lammert, L. D. Pab'on Ospina, P. Pourbeik, D. Fetzer, "Implementation and Validation of WECC Generic Photovoltaic System Models in DIgSILENT PowerFactory", IEEE Power Energy Soc. Gen. Meet., pp. 1-5.
32. [32] I. G. and Y. B. and A. Courville, Deep Learning. MIT Press, 2016.
33. [33] A. Graves, A. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks", in 2013 IEEE international conference on acoustics, speech and signal processing, 2013, pp. 6645-6649. [DOI:10.1109/ICASSP.2013.6638947]
34. [34] M. Ghalei Monfared Zanjani, K. Mazlumi, and I. Kamwa, "Combined analysis of distribution-level PMU data with transmission-level PMU for early detection of long-term voltage instability", IET Gener. Transm. Distrib., vol. 13, no. 16, pp. 3634-3641, 2019, doi: 10.1049/iet-gtd.2019.0311. [DOI:10.1049/iet-gtd.2019.0311]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb