XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zohrevand J, Karami H R, Moradi M H, Hatamisharf A. Partial Discharge Localization in GIS Using Electromagnetic Inverse Filter. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :167-176
URL: http://jiaeee.com/article-1-1528-en.html
Bu-Ali Sina University
Abstract:   (1425 Views)
Till now, many different methods like heuristic methods, and the method of time difference of arrival (TDoA) have been proposed and implemented for the localization of partial discharge in power equipment, but their weaknesses have made their usage to be limited in practice. Because in complex situations like the presence of noise, scattering, barriers, and inhomogeneous mediums the accuracy of results will be strongly reduced. The new time-reversal method that has been recently proposed in the field of partial discharge localization showed that can accurately localize partial discharge using just a single sensor. In this paper, the implementation of a different version of the time-reversal method in the electromagnetic regime, named inverse filter has been proposed for the localization of partial discharge in GIS. For evaluation of the proposed method, different scenarios are designed and simulated in two pipe-shape and T-shape structures of a GIS in CST-MWS. Results show that in the case of using minimum entropy for determining the moment of refocusing the waves, this method can accurately localize partial discharge in GIS, in all scenarios.
Full-Text [PDF 1058 kb]   (514 Downloads)    
Type of Article: Research | Subject: Power
Received: 2022/11/19 | Accepted: 2023/06/1 | Published: 2025/01/11

References
1. [1] Q. Khan, SS. Refaat, H. Abu-Rub, et al, Partial discharge detection and diagnosis in gas insulated switchgear: state of the art, IEEE Electr. Insul. Mag, vol. 35, no. 5, pp. 16-33, 2019. [DOI:10.1109/MEI.2019.8735667]
2. [2] Cigré Working Group A3.06. Final report of the 2004 - 2007 international enquiry on reliability of high voltage equipment - part 5 - gas insulated switchgear (GIS), Cigré Broch, vol. 513, 2012.
3. [3] Xavier GVR, Silva HS, Costa EG da, et al, Detection, Classification and Location of Sources of Partial Discharges Using the Radiometric Method: Trends, Challenges and Open Issues, IEEE Access 2021; vol 9; pp 110787-110810, 2021. [DOI:10.1109/ACCESS.2021.3102888]
4. [4] جهانگیر، ح. اکبری، ا. ازیرانی، پ. ورله، "بررسی عملکرد پروب‌های UHF در آشکارسازی تخلیه جزئی در ترانسفورماتورهای فشار‌قوی"، مجله انجمن مهندسی برق و الکترونیک ایران، سال پانزدهم، شماره سوم، صفحه 33-43، تهران، پاییز 1397.
5. [5] مذهب جعفری، ع. اکبری ازیرانی، ا. "مدلسازی سیم پیچ ترانسفورماتورهای قدرت با استفاده از مدل خط انتقال چند‌سیمه بمنظور مکانیابی تخلیه جزئی"، مجله انجمن مهندسی برق و الکترونیک ایران، سال ششم، شماره اول، صفحه 73-83، تهران، بهار و تابستان 1388.
6. [6] J. Q. Chan, W J. K. Raymond, H. A. Illias, et al., "Partial Discharge Localization Techniques: A Review of Recent Progress", Energies (Switzerland), vol. 16, no 6, pp. 1-31, 2023. [DOI:10.3390/en16062863]
7. [7] J. Liu, M. Yao, C. Huang, et al, "Research of partial discharge localization method in GIS based on UHF technique", WSEAS Trans. Circuits Syst., vol. 8, no. 8, pp. 631-640, 2009.
8. [8] J. Jiang, K. Wang, C. Zhang, et al, "Improving the Error of Time Differences of Arrival on Partial Discharges Measurement in Gas-Insulated Switchgear", pp. 1-11, 2018. [DOI:10.3390/s18114078] [PMID] []
9. [9] X. Li, X. Wang, A. Yang, et al, "Partial Discharge Source Localization in GIS Based on Image Edge Detection and Support Vector Machine", IEEE Trans. Power Deliv., vol. PP, p. 1, Jun. 2019. [DOI:10.1109/TPWRD.2019.2925034]
10. [10] H. Qiang, Q. Wang, H. Niu, et al, "A Partial Discharge Localization Method Based on the Improved Artificial Fish Swarms Algorithm", Energies, vol. 16, no. 6. 2023. [DOI:10.3390/en16062928]
11. [11] C. Gao, L. Yu, Y. Xu, et al, Partial discharge localization inside transformer windings via fiber-optic acoustic sensor array, IEEE Transaction on Power Delivery, vol. 34, pp 1251-1260, 2019. [DOI:10.1109/TPWRD.2018.2880230]
12. [12] S. Yoshida, H. Kojima, N. Hayakawa, et al, Light emission spectrum depending on propagation of partial discharge in SF6, In Conference Record of IEEE International Symposium on Electrical Insulation, pp. 365-368, 2008. [DOI:10.1109/ELINSL.2008.4570350]
13. [13] M. Ren, B. Song, T. Zhuang, et al, Optical partial discharge diagnostic in SF 6 gas insulated system via multi-spectral detection, ISA Trans, vol. 75, pp. 247-257, 2018. [DOI:10.1016/j.isatra.2018.02.008] [PMID]
14. [14] MM. Yaacob, MA. Alsaedi, JR. Rashed, et al, Review on partial discharge detection techniques related to high voltage power equipment using different sensors, Photonic Sensors, vol. 4, pp. 325-337, 2014. [DOI:10.1007/s13320-014-0146-7]
15. [15] H. Karami, M. Azadifar, A. Mostajabi, et al, Partial discharge localization using time reversal: application to power transformers, Sensors (Switzerland), vol. 20, pp. 1-15, 2020. [DOI:10.3390/s20051419] [PMID] []
16. [16] N. Stockhausen, C. Werner, J. Streicher, et al, Application of inverse filtering on lidar signals, In Proceedings SPIE, vol 3865, pp. 134-143, 1999. [DOI:10.1117/12.373029]
17. [17] X. Yu, C. Zou, L. Yang, Improved recursive inverse filtering method for blind image restoration, In 6th International Conference on Signal Processing, 2002, vol 1, pp. 37-40, 2002.
18. [18] RP. Kumar, SC. Neela, SR. Murikinati, et al, Image restoration by inverse filtering, In 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), pp. 1227-1231, 2022. [DOI:10.1109/ICCMC53470.2022.9754161]
19. [19] ĐT. Grozdić, ST. Jovičić, J. Galić, et al, Application of inverse filtering in enhancement of whisper recognition, In 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), pp. 157-162, 2014. [DOI:10.1109/NEUREL.2014.7011492]
20. [20] E. Onajite, Chapter 7 - Understanding Deconvolution. In Seismic Data Analysis Techniques in Hydrocarbon Exploration, Elsevier, pp. 93-103, 2014. [DOI:10.1016/B978-0-12-420023-4.00007-1]
21. [21] H. Karami, F. Askari, F. Rachidi, et al, An inverse-filter-based method to locate partial discharge sources in power transformers, Energies, vol. 15, p. 1988, 2022. [DOI:10.3390/en15061988]
22. [22] Karami H, Azadifar M, Mostajabi A, et al. Localization of Electromagnetic Interference Sources Using a Time-Reversal Cavity, IEEE Trans. Ind. Electron. 2021; vol 68; pp 654-662, 2021. [DOI:10.1109/TIE.2019.2962460]
23. [23] J. Zohrevand, H. Karami, M. Rubinstein, et al, Partial discharge localization using time reversal: application to gas insulated switchgear, Electric Power System Research, vol. 212, 2022. [DOI:10.1016/j.epsr.2022.108655]
24. [24] M. Rubinstein, F. Rachidi, Electromagnetic time reversal and its application to electromagnetic compatibility, In 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, EMC, SI and PI, 2018. [DOI:10.1109/EMCSI.2018.8495379]
25. [25] A. Ragusa, H. Sasse, A. Duffy, et al, Electromagnetic time reversal method to locate partial discharges in power networks using 1D TLM modelling, IEEE Letters on Electromagnetic Compatibility Practice and Applications, vol. 3, pp. 24-28, 2021. [DOI:10.1109/LEMCPA.2020.3032465]
26. [26] P. Kosmas, CM. Rappaport, FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions, IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 2317-2323, 2005. [DOI:10.1109/TMTT.2005.850444]
27. [27] Z. Wang, R. Razzaghi, M. Paolone, et al, Electromagnetic time reversal similarity characteristics and its application to locating faults in power networks, IEEE Transactions on Power Delivery, vol. 8, pp. 147507-147515, 2020.
28. [28] G. Montaldo, M. Tanter, Fink M, Real time inverse filter focusing through iterative time reversal, Journal of the Acoustical Society of America, vol. 115, pp. 768-775, 2004. [DOI:10.1121/1.1636462] [PMID]
29. [29] BE. Anderson, J. Douma, TJ. Ulrich, et al, Improving spatio-temporal focusing and source reconstruction through deconvolution, Wave Motion, vol. 52, pp. 151-159, 2015. [DOI:10.1016/j.wavemoti.2014.10.001]
30. [30] ML. Willardson, BE. Anderson, SM. Young, et al, Time reversal focusing of high amplitude sound in a reverberation chamber, Journal of the Acoustical Society of America, vol. 143, pp. 696-705, 2018. [DOI:10.1121/1.5023351] [PMID]
31. [31] J. Douma, E. Niederleithinger, R. Snieder, Locating events using time reversal and deconvolution: experimental application and analysis, Journal of Nondestructive Evaluation, vol. 34, p. 2, 2015. [DOI:10.1007/s10921-015-0276-x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)