XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saraslani S, Golmakani A. Ultra-wideband low noise amplifier using resistive feedback and current reause. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :97-104
URL: http://jiaeee.com/article-1-1472-en.html
Department of Electrical and Engineering, Faculty of Electrical and Medical Engineering,Sadjad University of Technology, Mashhad
Abstract:   (1766 Views)
In this paper, low-noise amplifier Ultra-Wideband is presented. The proposed LNA uses shunt peaking and series peaking technique to extend the bandwidth. A current-reused architecture is employed to decrease the power consumption. Simulated in 180nm RF-TSMC CMOS technology, the proposed Ultra-Wideband LNA achieves a maximum power gain of 15.3 dB, NF of 5.74-5.88 dB, 3 dB bandwidth from 1.16 GHz to 10.34 GHz, While consuming 11.7 mW power (including buffer) from 1.8 V supply.

 
Full-Text [PDF 1168 kb]   (990 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2022/05/22 | Accepted: 2023/08/5 | Published: 2023/09/9

References
1. [1] T. Ma and F. Hu, "A Wideband Flat Gain Low Noise Amplifier Using Active Inductor for Input Matching," IEEE Trans. Circuits Syst., vol. 66, no. 6, pp. 904 - 908, June 2019. [DOI:10.1109/TCSII.2018.2872068]
2. [2] TO-PO WANG, "Design and Analysis of Simultaneous Wideband Input/Output Matching Technique for Ultra-Wideband Amplifier," IEEE Access., vol. 9, pp. 46800 - 46809, March 2021. [DOI:10.1109/ACCESS.2021.3068394]
3. [3] J. Jang, H. Kim, G. Lee and T. W. Kim, "Two-stage compact wideband flat gain low-noise amplifier using high-frequency feed-forward active inductor," IEEE Trans. Microw. Theory Tech., vol. 67, no. 12, pp. 4803-4811, Dec 2019. [DOI:10.1109/TMTT.2019.2947483]
4. [4] S. S. Regulagadda, B. D. Sahoo, A. Dutta, K. Y. Varma, and V. S. Rao, "A Packaged Noise-Canceling High-Gain Wideband Low Noise Amplifier," IEEE Trans. Circuits Syst., vol. 66, no.1, pp. 11-15, Jan 2019. [DOI:10.1109/TCSII.2018.2828781]
5. [5] H. Yu, Y. Chen, C. C. Boon, P.-I. Mak and R. P. Martins, "A 0.096- mm2 1 -20 GHz triple-path Noise-canceling common-gate commonsource LNA with dual complementary pMOS-nMOS configuration," IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 144-159, Jan 2020. [DOI:10.1109/TMTT.2019.2949796]
6. [6] S. Kim and K. Kwon, "A 50 MHz-1 GHz 2.3 dB NF noise-cancelling balun-LNA employing a modified current-bleeding technique and balanced loads," IEEE Trans. Circuits Syst., vol. 66, no. 2, pp. 546-554, Feb 2019. [DOI:10.1109/TCSI.2018.2866184]
7. [7] N. Li, W. Feng, and X. Li, "A CMOS 3-12 GHz Ultrawideband Low Noise Amplifier by Dual-Resonance Network," IEEE Microw., vol. 27, no. 4, pp. 383 - 385, April 2017. [DOI:10.1109/LMWC.2017.2679203]
8. [8] M. D. Souza, A. Mariano and T. Taris, "Reconfigurable inductorless wideband CMOS LNA for wireless communications," IEEE Trans. Circuits Syst., vol. 64, no. 3, pp. 675-685, Mar 2017. [DOI:10.1109/TCSI.2016.2618361]
9. [9] M. Parvizi, K. Allidina and M. N. El-Gamal, "Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 μW 0.6-4.2 GHz current-reuse CMOS LNA," IEEE J. Solid-State Circuits., vol. 51, no. 3, pp. 574-586, Mar 2016. [DOI:10.1109/JSSC.2015.2504413]
10. [10] M. Parvizi, K. Allidina and M. N. El-Gamal, "A Sub-mw, ultra-low-voltage, wideband low-noise amplifier design technique," IEEE Trans. Syst., vol. 23, no. 6, pp. 1111-1122, June 2015. [DOI:10.1109/TVLSI.2014.2334642]
11. [11] S. Bagga, A. L. Mansano, W. A. Serdijn, J. R. Long , K. V. Hartingsveldt, and K. Philips, "A Frequency-Selective Broadband Low-Noise Amplifier With Double-Loop Transformer Feedback," IEEE Trans. Circuits Syst., vol. 61, no. 6, pp. 1883 - 1891, June 2014. [DOI:10.1109/TCSI.2013.2295010]
12. [12] J. Y. C. Liu, J. S. Chen, C. Hsia, P. Y. Yin, and C. W. Lu, "A Wideband Inductorless Single-to-Differential LNA in 0.18μm CMOS Technology for Digital TV Receivers," IEEE Microw., vol. 24, no. 7, pp. 472 - 474, July 2014. [DOI:10.1109/LMWC.2014.2316495]
13. [13] K H. Chen, J. H. Lu, B. J. Chen, and S. I. Liu, "An Ultra-Wide-Band 0.4-10‌GHz LNA in 0.18μm CMOS," IEEE Trans. Circuits Syst., vol. 54, no. 3, pp. 217 - 221, March 2007. [DOI:10.1109/TCSII.2006.886880]
14. [14] R. Weng, C. Liu and P. Lin, "A Low-Power Full-Band Low-Noise Amplifier for Ultra-Wideband Receivers," IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2077-2083, June 2010. [DOI:10.1109/TMTT.2010.2052404]
15. [15] A. Bevilacqua and A. M. Niknejad, "An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers," IEEE J. Solid-State Circuits., vol. 39, no. 12, pp. 2259-2268, Dec 2004. [DOI:10.1109/JSSC.2004.836338]
16. [16] S. Shekhar, J. S. Walling and D. J. Allstot, "Bandwidth extension techniques for CMOS amplifiers" vol. 41, no. 11, pp. 2424-2439, Nov 2006. [DOI:10.1109/JSSC.2006.883336]
17. [17] M. Moezzi and M. Sharif Bakhtiar, "Wideband LNA using active inductor with multiple feed-forward noise reduction paths," IEEE Trans. Microw, Theory Tech., vol. 60, no. 4, pp. 1069-1078, Apr 2012. [DOI:10.1109/TMTT.2012.2185947]
18. [18] G. Sapone and G. Palmisano, "A 3 - 10 GHz low-power CMOS low-noise," IEEE Trans. Microw., Theory Tech., vol. 59, no. 3, pp. 678-686, Mar 2011. [DOI:10.1109/TMTT.2010.2090357]
19. [19] M. Khurram and S. M. R. Hasan, "A 3-5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130 nm CMOS," IEEE Trans. Syst., vol. 20, no. 3, pp. 400-409, Mar 2012. [DOI:10.1109/TVLSI.2011.2106229]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb