XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tohidi E, Beigi A. Single and Multi-objective Aircrafts Landing Scheduling in Dynamic Environment. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :149-163
URL: http://jiaeee.com/article-1-1280-en.html
Shahid Rajaee Teacher Training University
Abstract:   (1480 Views)
Air travel has significantly grown as a fast and safe means of transportation. Therefore, creating a smooth air traffic and proper flight scheduling for safe landings with minimal time changes is necessary to avoid wasting time and money. In most studies, the aircraft landing scheduling problem has been considered a static issue. However, this challenge has a dynamic nature in real-world problems. One of the optimizing approaches in this scope is swarm intelligence optimization algorithms, which are simple and highly capable in solving optimization problems. Among these algorithms, Spider-Monkey optimization algorithm is more efficient than traditional algorithms by using few parameters, maintaining search history, controlling searches, and grouping members of the population if needed. In this study, an active scheduling method for aircraft landing scheduling using Spider-Monkey optimization algorithm and genetic algorithm has been presented. The proposed method is examined by some datasets of single and multi-runways (single and multi-objective aircraft landing). The achieved results show an improvement in flight schedules and reduced costs.
Full-Text [PDF 1107 kb]   (767 Downloads)    
Type of Article: Research | Subject: Electronic
Received: 2021/03/7 | Accepted: 2023/08/21 | Published: 2023/12/19

References
1. [1] اصلانی، م.، مسگری م. س.، "توسعه یادگیری تقویتی پیوسته در مسائل مکانی توزیع یافته (مورد مطالعاتی: کنترل هوشمند چراغ های راهنمایی)"، نشریه مهندسی برق و الکترونیک ایران، دوره ۱۷، شماره ۳، صفحه ۷۸-۶۳، پاییز 1399.
2. [2] Ng, K.K.H., Lee, C.K., Chan, F.T. and Lv, Y., "Review on meta-heuristics approaches for airside operation research", Applied Soft Computing, 66, pp.104-133, 2018. [DOI:10.1016/j.asoc.2018.02.013]
3. [3] Yu, S.P., Cao, X.B. and Zhang, J., "A real-time schedule method for Aircraft Landing Scheduling problem based on Cellular Automation", Applied Soft Computing, 11(4), pp.3485-3493, 2011. [DOI:10.1016/j.asoc.2011.01.022]
4. [4] Bennell, J.A., Mesgarpour, M. and Potts, C.N.,"Dynamic scheduling of aircraft landings", European Journal of Operational Research, 258(1), pp.315-327, 2017. [DOI:10.1016/j.ejor.2016.08.015]
5. [5] حضوری، م. ا.، عباسپور ع.، فتوحی فیروزآباد م.، معینی اقطاعی م.، "کمینه‌سازی کاهش اجباری توان تولیدی مزارع بادی با بهره‌گیری از یک راهکار کوتاه مدت ابتکاری بر مبنای بازپخش واحدهای فسیلی"، نشریه مهندسی برق و الکترونیک ایران، دوره ۱۳، شماره ۱، صفحه۱۰-۱، بهار 1395.
6. [6] Abraham, A., Guo, H. and Liu, H., "Swarm intelligence: foundations, perspectives and applications", In Swarm intelligent systems (pp. 3-25). Springer, Berlin, Heidelberg, 2006. [DOI:10.1007/978-3-540-33869-7_1]
7. [7] میرزائی، ف.، پویان ع.، "مروری بر رباتیک جمعی و جایگاه آن در سیستم‌های چندرباته"، نشریه مهندسی برق و الکترونیک ایران، دوره 17، شماره 2، صفحه ۷۲-۵۳، تابستان 1399.
8. [8] Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M. and Abramson, D., "Scheduling aircraft landings-the static case", Transportation science, 34(2), pp.180-197, 2000. [DOI:10.1287/trsc.34.2.180.12302]
9. [9] Faye, A., "A quadratic time algorithm for computing the optimal landing times of a fixed sequence of planes", European Journal of Operational Research, 270(3), pp.1148-1157, 2018. [DOI:10.1016/j.ejor.2018.04.021]
10. [10] Sabar, N.R. and Kendall, G., "An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem", Omega, 56, pp.88-98, 2015. [DOI:10.1016/j.omega.2015.03.007]
11. [11] Riahi, V., Newton, M.H., Polash, M.M.A., Su, K. and Sattar, A., "Constraint guided search for aircraft sequencing", Expert Systems with Applications, 118, pp.440-458, 2019. [DOI:10.1016/j.eswa.2018.10.033]
12. [12] Moser, I. and Hendtlass, T., "Solving dynamic single-runway aircraft landing problems with extremal optimization", In 2007 IEEE Symposium on Computational Intelligence in Scheduling (pp. 206-211). IEEE, 2007, April. [DOI:10.1109/SCIS.2007.367691]
13. [13] Salehipour, A., "An algorithm for single-and multiple-runway aircraft landing problem", Mathematics and Computers in Simulation, 175, pp.179-191, 2020. [DOI:10.1016/j.matcom.2019.10.006]
14. [14] Bencheikh, G., El Khoukhi, F., Baccouche, M., Boudebous, D., Belkadi, A. and Ouahman, A.A., "Hybrid Algorithms for the Multiple Runway Aircraft Landing Problem", IJCSA, 10(2), pp.53-71, 2013.
15. [15] Girish, B.S., "An efficient hybrid particle swarm optimization algorithm in a rolling horizon framework for the aircraft landing problem", Applied Soft Computing, 44, pp.200-221, 2016. [DOI:10.1016/j.asoc.2016.04.011]
16. [16] Hammouri, A.I., Braik, M.S., Al-Betar, M.A. and Awadallah, M.A., "ISA: a hybridization between iterated local search and simulated annealing for multiple-runway aircraft landing problem", Neural Computing and Applications, 32(15), pp.11745-11765, 2020. [DOI:10.1007/s00521-019-04659-y]
17. [17] Zhang, J., Zhao, P., Zhang, Y., Dai, X. and Sui, D., "Criteria selection and multi-objective optimization of aircraft landing problem", Journal of Air Transport Management, 82, p.101734, 2020. [DOI:10.1016/j.jairtraman.2019.101734]
18. [18] Bencheikh, G., Boukachour, J. and Alaoui, A.E.H., "A memetic algorithm to solve the dynamic multiple runway aircraft landing problem", Journal of King Saud University-Computer and Information Sciences, 28(1), pp.98-109, 2016. [DOI:10.1016/j.jksuci.2015.09.002]
19. [19] صائمی، س.، توکلی مقدم، ر.، نوذری، ح.، ملکی مقدم، پ.، "زمان بندی فرود و پرواز هواپیماها بر روی باندها با در نظر گرفتن محدودیت در تعداد مکان استقرار هواپیما"، فصلنامه مهندسی حمل و نقل، جلد 8، شماره 4، 1395.
20. [20] یزدانی، م.، فرجی مقدم، ز.، مقدم زرندی، ز.، "حل مسئله زمان بندی چندهدفه‌ی فرود هواپیما در حالت چندباند"، نشریه مهندسی هوانوردی، جلد 21، شماره 1، 1398.
21. [21] نقی زاده، ر. ، "تخمین پارامترهای مدل تک دیودی و دو دیودی سلولهای خورشیدی با روش بهینهسازی علف هرز مهاجم مبتنی بر تخمین توزیع"، نشریه مهندسی برق و الکترونیک ایران، دوره 18، شماره 4، صفحه 137-147، زمستان 1400.
22. [22] Rajabioun, R., "Cuckoo optimization algorithm", Applied soft computing, 11(8), pp.5508-5518, 2011. [DOI:10.1016/j.asoc.2011.05.008]
23. [23] Radmanesh H, Sharifi R, Fathi S H. A BAT Optimization Algorithm for Sizing and Siting of Optimal Distributed Generation in Distribution Networks. Journal of Iranian Association of Electrical and Electronics Engineers 2020; 17 (4) :11-15 [DOI:10.29252/jiaeee.17.4.11]
24. [24] ایروانی راد، م. ا.، جهانگیر مشیدی، آ.، "مروری بر الگوریتم‌های تکاملی بهینه‌سازی ملهم از پستانداران"، نهمین همایش ملی مهندسی مکانیک، خمینی شهر، 1395.
25. [25] Yazdani, M., Jolai, F., "Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm", Journal of computational design and engineering, 3(1), pp.24-36, 2016. [DOI:10.1016/j.jcde.2015.06.003]
26. [26] Agrawal, V., Rastogi, R. and Tiwari, D.C., "Spider monkey optimization: a survey", International Journal of System Assurance Engineering and Management, 9(4), pp.929-941, 2018. [DOI:10.1007/s13198-017-0685-6]
27. [27] Bansal, J.C., Sharma, H., Jadon, S.S. and Clerc, M., "Spider monkey optimization algorithm for numerical optimization", Memetic computing, 6(1), pp.31-47, 2014. [DOI:10.1007/s12293-013-0128-0]
28. [28] Beasley, J.E.( 2004,September 21). Aircraft Landing. Retrieved from http//mscmga.ms.ic.ac.uk/info.html.
29. [29] Eiben, A.E. and Smith, J.E., Introduction to evolutionary computing (Vol. 53, p. 18). Berlin: springer, 2003. [DOI:10.1007/978-3-662-05094-1]
30. [30] Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M. and Abramson, D., "Displacement problem and dynamically scheduling aircraft landings", Journal of the operational research society, 55(1), pp.54-64, 2004. [DOI:10.1057/palgrave.jors.2601650]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb