Volume 22, Issue 2 (JIAEEE Vol.22 No.2 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(2): 19-33 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirsadraei I, Nasrollahi S. Simultaneous Adaptive Estimation of the Attitude and Bias of Gyroscopes in Motion Using Accelerometer and GPS Data with Hardware Implementation. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (2) :19-33
URL: http://jiaeee.com/article-1-1589-en.html
MUT university
Abstract:   (876 Views)
This paper presents a method for determining the attitude (Euler angles) of a moving object. One of the main challenges in attitude determination is the presence of inherent errors in inertial sensors and motion disturbances, including accelerations acting on the object during its movement, which lead to reduced accuracy in estimating Euler angles. In this paper, using an adaptive cascading fusion structure where estimation filters are used sequentially, information from various sensors including gyroscopes, accelerometers, and data received from Global Navigation Satellite System (GNSS receiver) are combined. This approach allows for accurate attitude determination and sensor bias estimation. Since solving the challenges of attitude determination (sensor biases and compensation for object motion disturbances) requires precise tuning of filter parameters, the use of adaptive filters in this structure leads to easier optimization of each filter's performance and error reduction. The evaluation of the proposed structure is carried out using two methods: utilizing synthetic data generated in a simulation scenario and also with real data collected in an experimental test. The results show that the proposed structure significantly reduces the error in estimation of angles and gyroscope biases compared to other aproaches.

 
Full-Text [PDF 4424 kb]   (102 Downloads)    
Type of Article: Research | Subject: Control
Received: 2023/04/10 | Accepted: 2025/01/8 | Published: 2025/08/15

References
1. [1] Moradi M, Bolandi H, Abedi M. Federated Extended Kalman Filter for Sensor Fault Detection and Isolation. Journal of Iranian Association of Electrical and Electronics Engineers 2017; 13 (4) :71-79
2. [2] Sadeghzadeh Nokhodberiz N, Soltani B, Pasand M, Radmanesh H. Additive Multi-rate Delayed Extended Kalman Filter Attitude Estimation Fusing Gyroscope and Star Tracker Sensors. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (3) :149-158. [DOI:10.52547/jiaeee.20.3.149]
3. [3] W. Li and J. Wang, "Effective adaptive kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems", J. Navig., vol. 66, no. 1, pp. 99-113, 2013, doi: 10.1017/S0373463312000331. [DOI:10.1017/S0373463312000331]
4. [4] T. S. Yoo, S. K. Hong, H. M. Yoon, and S. Park, "Gain-scheduled complementary filter design for a MEMS based attitude and heading reference system", Sensors, vol. 11, no. 4, pp. 3816-3830, 2011, doi: 10.3390/s110403816. [DOI:10.3390/s110403816]
5. [5] M. S. Roh and B. S. Kang, "Dynamic Accuracy Improvement of a MEMS AHRS for Small UAVs", Int. J. Precis. Eng. Manuf., vol. 19, no. 10, pp. 1457-1466, 2018, doi: 10.1007/s12541-018-0172-2. [DOI:10.1007/s12541-018-0172-2]
6. [6] R. G. Valenti, I. Dryanovski, and J. Xiao, "Keeping a good attitude: A quaternion-based orientation filter for IMUs and MARGs", Sensors (Switzerland), vol. 15, no. 8, pp. 19302-19330, 2015, doi: 10.3390/s150819302. [DOI:10.3390/s150819302]
7. [7] H. Rehbinder and X. Hu, "Drift-free attitude estimation for accelerated rigid bodies", Automatica, vol. 40, no. 4, pp. 653-659, 2004. [DOI:10.1016/j.automatica.2003.11.002]
8. [8] W. Chou, B. Fang, L. Ding, X. Ma, and X. Guo, "Two-step optimal filter design for the low-cost attitude and heading reference systems", IET Sci. Meas. & Technol., vol. 7, no. 4, pp. 240-248, 2013. [DOI:10.1049/iet-smt.2012.0100]
9. [9] S. Lee and S. Hong, "Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units", Sensors, vol. 16, no. 12, p. 2102, 2016, doi: 10.3390/s16122102. [DOI:10.3390/s16122102]
10. [10] J. K. Lee, E. J. Park, and S. N. Robinovitch, "Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions", IEEE Trans. Instrum. Meas., vol. 61, no. 8, pp. 2262-2273, 2012. [DOI:10.1109/TIM.2012.2187245]
11. [11] M. A. Javed, M. Tahir, and K. Ali, "Cascaded Kalman Filtering-Based Attitude and Gyro Bias Estimation with Efficient Compensation of External Accelerations", IEEE Access, vol. 8, pp. 50022-50035, 2020, doi: 10.1109/ACCESS.2020.2980016. [DOI:10.1109/ACCESS.2020.2980016]
12. [12] B. Candan and H. E. Soken, "Estimation of Attitude Using Robust Adaptive Kalman Filter", in 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2021, pp. 159-163, doi: 10.1109/MetroAeroSpace51421.2021.9511658. [DOI:10.1109/MetroAeroSpace51421.2021.9511658]
13. [13] S. Zihajehzadeh, D. Loh, T. J. Lee, R. Hoskinson, and E. J. Park, "A cascaded Kalman filter-based GPS/MEMS-IMU integration for sports applications", Measurement, vol. 73, pp. 200-210, Sep. 2015, doi: 10.1016/j.measurement.2015.05.023. [DOI:10.1016/j.measurement.2015.05.023]
14. [14] M. Sabet, H. Mohammadi Daniali, A. Fathi, and E. Alizadeh, "Design and experimental comparison of a new attitude estimation algorithm for accelerated rigid body", J. Control, vol. 12, no. 4, 2019, doi: 10.29252/joc.12.4.35. [DOI:10.29252/joc.12.4.35]
15. [15] K. L. Lai, J. L. Crassidis, and R. R. Harman, "Real-time attitude-independent gyro calibration from three-axis magnetometer measurements", Collect. Tech. Pap. - AIAA/AAS Astrodyn. Spec. Conf., vol. 1, no. August 2004, pp. 282-292, 2004, doi: 10.2514/6.2004-4855. [DOI:10.2514/6.2004-4855]
16. [16] H. E. Söken and C. Hajiyev, "UKF based in-flight calibration of magnetometers and rate gyros for pico satellite attitude determination", Asian J. Control, vol. 14, no. 3, pp. 707-715, May 2012, doi: 10.1002/asjc.368. [DOI:10.1002/asjc.368]
17. [17] M. H. Afzal, V. Renaudin, and G. Lachapelle, "System and method for gyroscope error estimation", World Intellectual Property Organization, vol. US 2012/02. Google Patents, 2012.
18. [18] Y. Yang, C. Zhang, J. Lu, and H. Zhang, "In-Flight Calibration of Gyros and Star Sensor With Observability Analysis for SINS / CNS Integration", vol. 17, no. 21, pp. 7131-7142, 2017. [DOI:10.1109/JSEN.2017.2754464]
19. [19] C. J. Gioia and J. A. Christian, "Gyro bias estimation using interior star angles for manual attitude determination", J. Spacecr. Rockets, vol. 54, no. 2, pp. 511-520, 2017, doi: 10.2514/1.A33672. [DOI:10.2514/1.A33672]
20. [20] M. E. Pittelkau, "Autonomous on-Board Calibration of Attitude Sensors and Gyros", Symp. A Q. J. Mod. Foreign Lit., no. September, pp. 24-28, 2007.
21. [21] H. Gu, B. Zhao, H. Zhou, X. Liu, and W. Su, "MEMS gyroscope bias drift self-calibration based on noise-suppressed mode reversal", Micromachines, vol. 10, no. 12, 2019, doi: 10.3390/mi10120823. [DOI:10.3390/mi10120823]
22. [22] P. Zhang, J. Gu, E. E. Milios, and P. Huynh, "Navigation with IMU/GPS/digital compass with unscented Kalman filter", IEEE Int. Conf. Mechatronics Autom. ICMA 2005, no. July, pp. 1497-1502, 2005, doi: 10.1109/icma.2005.1626777. [DOI:10.1109/ICMA.2005.1626777]
23. [23] K. Gade, "The Seven Ways to Find Heading", J. Navig., vol. 69, no. 5, pp. 955-970, 2016, doi: 10.1017/S0373463316000096. [DOI:10.1017/S0373463316000096]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)