1. [1] G.C. Layek, An introduction to dynamical systems and chaos (pp. 1-619). New Delhi: Springer, 2015. [
DOI:10.1007/978-81-322-2556-0]
2. [2] G. Ye, "Image scrambling encryption algorithm of pixel bit based on chaos map", Pattern Recognition Letters, Vol. 31, 347-354, 2010. [
DOI:10.1016/j.patrec.2009.11.008]
3. [3] Z.T. Njitacke, H. B. Fotsin, A. N. Negou, & D. Tchiotsop, "Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit", Chaos, Solitons & Fractals, Vol. 91, 180-197, 2016. [
DOI:10.1016/j.chaos.2016.05.011]
4. [4] I. Petráš, "A note on the fractional-order Volta's system", Communications in Nonlinear Science and Numerical Simulation, Vol. 15, 384-393, 2010. [
DOI:10.1016/j.cnsns.2009.04.009]
5. [5] A. Modiri, & S. Mobayen, "Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems", ISA transactions, Vol. 105, 33-50, 2020. [
DOI:10.1016/j.isatra.2020.05.039]
6. [6] D. Deepika, S. Kaur, & S. Narayan, "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control", Chaos, Solitons & Fractals, Vol. 115, 196-203, 2018. [
DOI:10.1016/j.chaos.2018.07.028]
7. [7] C. Song, S. Fei, J. Cao, & C. Huang, "Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control", Mathematics, Vol. 7, 599, 2019. [
DOI:10.3390/math7070599]
8. [8] Y. L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y. M. Chu, & A. A. Aly, "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence", Chaos, Solitons & Fractals, Vol. 146, 110881, 2021. [
DOI:10.1016/j.chaos.2021.110881]
9. [9] L. Huang, W. Li, J. Xiang, & G. Zhu, "Adaptive finite-time synchronization of fractional-order memristor chaotic system based on sliding-mode control", The European Physical Journal Special Topics, Vol. 231, 3109-3118, 2022. [
DOI:10.1140/epjs/s11734-022-00564-z]
10. [10] D. Deepika, "Hyperbolic uncertainty estimator based fractional order sliding mode control framework for uncertain fractional order chaos stabilization and synchronization", ISA transactions, Vol. 123, 76-86, 2022. [
DOI:10.1016/j.isatra.2021.05.036]
11. [11] R. Wang, Z. YunNing, Y. Chen, X. Chen, and X. Lei, "Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: an adaptive sliding mode control approach", Nonlinear Dynamics, Vol. 100, 1275-1287, 2020. [
DOI:10.1007/s11071-020-05574-x]
12. [12] T. Chen, H. Yang, and J. Yuan, "Event-Triggered Adaptive Neural Network Backstepping Sliding Mode Control for Fractional Order Chaotic Systems Synchronization With Input Delay", IEEE Access, Vol. 9, 100868-100881, 2021. 10.1109/ACCESS.2021.3097159 [
DOI:10.1109/ACCESS.2021.3097159]
13. [13] Z. Sun, "Synchronization of fractional-order chaotic systems with non-identical orders, unknown parameters and disturbances via sliding mode control", Chinese Journal of Physics, Vol. 56, 2553-2559, 2018. [
DOI:10.1016/j.cjph.2018.08.007]
14. [14] V. Vafaei, H. Kheiri, and A. J. Akbarfam, "Synchronization of fractional‐order chaotic systems with disturbances via novel fractional‐integer integral sliding mode control and application to neuron models", Mathematical Methods in the Applied Sciences, Vol. 42, 2761-2773, 2019. [
DOI:10.1002/mma.5548]
15. [15] J. Jiang, D. Cao, and H. Chen, "Sliding mode control for a class of variable-order fractional chaotic systems", Journal of the Franklin Institute, Vol. 357, 10127-10158, 2020. [
DOI:10.1016/j.jfranklin.2019.11.036]
16. [16] M. Taheri, C. Zhang, Z. R. Berardehi, Y. Chen, & M. Roohi, "No-chatter model-free sliding mode control for synchronization of chaotic fractional-order systems with application in image encryption". Multimedia Tools and Applications, 1-31, 2022. [
DOI:10.1007/s11042-022-12329-w]
17. [17] Y. Gu, J. Sun, & X. Fu, "A Novel Robust Neural Network Sliding-Mode Control Method for Synchronizing Fractional Order Chaotic Systems in the Presence of Uncertainty, Disturbance and Time-Varying Delay",. Journal of Electrical Engineering & Technology, 1-11, 2022. [
DOI:10.1007/s42835-022-01225-w]
18. [18] M. M. Al-sawalha, "Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control", Advances in Difference Equations, Vol. 417, 1-17, 2020. [
DOI:10.1186/s13662-020-02876-7]
19. [19] D. Zhu, W. Zhang, C. Liu, and J. Duan, "Fractional-Order Hyperbolic Tangent Sliding Mode Control for Chaotic Oscillation in Power System", Mathematical Problems in Engineering, 1-10, 2021, doi.org/10.1155/2021/6691941 [
DOI:10.1155/2021/6691941]
20. [20] Y. Tong, Z. Cao, H. Yang, C. Li, and W. Yu, "Design of a five-dimensional fractional-order chaotic system and its sliding mode control", Indian Journal of Physics, Vol. 96, 855-867, 2022. [
DOI:10.1007/s12648-021-02181-3]
21. [21] Y. Chen, C. Tang, and M. Roohi, "Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: an application in secure communications", Journal of the Franklin Institute, Vol. 358, 8109-8137, 2021. [
DOI:10.1016/j.jfranklin.2021.08.007]
22. [22] S. Z. Mirrezapour, A. Zare, & M. Hallaji, (2022). "A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances". Journal of Vibration and Control, Vol. 28(7-8), 773-785, 2022. [
DOI:10.1177/1077546320982453]
23. [23] W. Gu, Y. Yu, and W. Hu, "Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time delay", IEEE/CAA Journal of Automatica Sinica, Vol. 4, 107-113, 2017. 10.1109/JAS.2017.7510340 [
DOI:10.1109/JAS.2017.7510340]
24. [24] A. Mohammadzadeh, and S. Ghaemi, "Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC", Nonlinear Dynamics, Vol. 88, 2993-3002, 2017. [
DOI:10.1007/s11071-017-3427-z]
25. [25] Q. Liu, and J. Wang, "A one-layer recurrent neural network with a discontinuous activation function for linear programming", Neural Computation, Vol. 20, 1366-1383, 2008. 10.1109/TNN.2007.910736 [
DOI:10.1162/neco.2007.03-07-488]
26. [26] S. Liu, and J. Wang, "A simplified dual neural network for quadratic programming with its KWTA application", IEEE Transactions on Neural Networks, Vol. 17, 1500-1510, 2006. 10.1109/TNN.2006.881046 [
DOI:10.1109/TNN.2006.881046]
27. [27] Y. Xia, J. Wang, and W. Guo, "Two projection neural networks with reduced model complexity for nonlinear programming", IEEE transactions on neural networks and learning systems, Vol. 31, 2020-2029, 2019. 10.1109/TNNLS.2019.2927639 [
DOI:10.1109/TNNLS.2019.2927639]
28. [28] Hassan, A. A., El-Habrouk, M., and Deghedie, S., "Inverse kinematics of redundant manipulators formulated as quadratic programming optimization problem solved using recurrent neural networks: A review", Robotica, Vol. 38, 1495-1512, 2020. [
DOI:10.1017/S0263574719001590]
29. [29] C. Liu, C. Li, and W. Li, "Computationally efficient MPC for path following of underactuated marine vessels using projection neural network", Neural Computing and Applications, Vol. 32, 7455-7464, 2020. [
DOI:10.1007/s00521-019-04273-y]
30. [30] Y. Yu, H. X. Li, S. Wang, & J. Yu, "Dynamic analysis of a fractional-order Lorenz chaotic system", Chaos, Solitons & Fractals, 42(2), 1181-1189, 2009. [
DOI:10.1016/j.chaos.2009.03.016]
31. [31] K. Diethelm, N. J. Ford, and A. D. Freed, "A predictor-corrector approach for the numerical solution of fractional differential equations", Nonlinear Dynamics, Vol. 29, 3-22, 2002. [
DOI:10.1023/A:1016592219341]
32. [32] M. Pourmahmood, S. Khanmohammadi, and G. Alizadeh, "Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller", Communications in Nonlinear Science and Numerical Simulation, Vol. 16, 2853-2868, 2021. [
DOI:10.1016/j.cnsns.2010.09.038]
33. [33] D. Kinderlehrer, and G. Stampacchia, An introduction to variational inequalities and their applications. Society for Industrial and Applied Mathematics, 2000. [
DOI:10.1137/1023111]
34. [34] A. Modiri, and S. Mobayen, "Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems", ISA transactions, Vol. 105, 33-50, 2020. [
DOI:10.1016/j.isatra.2020.05.039]
35. [35] Salimi M. A novel approach for sliding mode controller design and parameters selection in flyback switching power supplies . Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :1-12
36. [36] badi A, vali A, behnamgol V. Acceleration autopilot design using backstepping adaptive second-order sliding mode for pitch channel Flying object. Journal of Iranian Association of Electrical and Electronics Engineers 2020; 17 (3) :51-62