Volume 22, Issue 2 (JIAEEE Vol.22 No.2 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(2): 81-90 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kariminia A, Zarabadipour H. Synchronization of Fractional-Order Chaotic Systems in the Presence of Order Uncertainty Using Projection Recurrent Neural Network based Sliding Mode Control. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (2) :81-90
URL: http://jiaeee.com/article-1-1478-en.html
Imam Khomeini International University
Abstract:   (851 Views)
In this paper, the synchronization of fractional-order chaotic Lorenz and Chen systems using a constrained optimal control approach has been investigated. The control algorithm consists of two operative loops where the instant estimation of fractional order using a numerical optimizer is carried out through the inner loop, while the control laws are generated using sliding mode control principles based on exponential reaching conditions. The proposed method to estimate the fractional order is based on forming linear regression for the fractional-order equations of the Lorenz and Chen systems. A performance index is defined to satisfy the reaching conditions where the upper and lower bounds of optimization variables are obtained according to the variation range of fractional order. Therefore, a constrained quadratic programming problem is established where it is instantly minimized using a projection recurrent neural network. This optimizer with a simple structure and having asymptotic stability is able to determine the optimal variables with a high convergence rate. The estimated fractional order is used to update the control signals. The proposed algorithm has high performance in the presence of fractional order uncertainty in comparison with robust control approaches.
 
Full-Text [PDF 1327 kb]   (107 Downloads)    
Type of Article: Research | Subject: Control
Received: 2022/06/9 | Accepted: 2023/04/24 | Published: 2025/08/15

References
1. [1] G.C. Layek, An introduction to dynamical systems and chaos (pp. 1-619). New Delhi: Springer, 2015. [DOI:10.1007/978-81-322-2556-0]
2. [2] G. Ye, "Image scrambling encryption algorithm of pixel bit based on chaos map", Pattern Recognition Letters, Vol. 31, 347-354, 2010. [DOI:10.1016/j.patrec.2009.11.008]
3. [3] Z.T. Njitacke, H. B. Fotsin, A. N. Negou, & D. Tchiotsop, "Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit", Chaos, Solitons & Fractals, Vol. 91, 180-197, 2016. [DOI:10.1016/j.chaos.2016.05.011]
4. [4] I. Petráš, "A note on the fractional-order Volta's system", Communications in Nonlinear Science and Numerical Simulation, Vol. 15, 384-393, 2010. [DOI:10.1016/j.cnsns.2009.04.009]
5. [5] A. Modiri, & S. Mobayen, "Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems", ISA transactions, Vol. 105, 33-50, 2020. [DOI:10.1016/j.isatra.2020.05.039]
6. [6] D. Deepika, S. Kaur, & S. Narayan, "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control", Chaos, Solitons & Fractals, Vol. 115, 196-203, 2018. [DOI:10.1016/j.chaos.2018.07.028]
7. [7] C. Song, S. Fei, J. Cao, & C. Huang, "Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control", Mathematics, Vol. 7, 599, 2019. [DOI:10.3390/math7070599]
8. [8] Y. L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y. M. Chu, & A. A. Aly, "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence", Chaos, Solitons & Fractals, Vol. 146, 110881, 2021. [DOI:10.1016/j.chaos.2021.110881]
9. [9] L. Huang, W. Li, J. Xiang, & G. Zhu, "Adaptive finite-time synchronization of fractional-order memristor chaotic system based on sliding-mode control", The European Physical Journal Special Topics, Vol. 231, 3109-3118, 2022. [DOI:10.1140/epjs/s11734-022-00564-z]
10. [10] D. Deepika, "Hyperbolic uncertainty estimator based fractional order sliding mode control framework for uncertain fractional order chaos stabilization and synchronization", ISA transactions, Vol. 123, 76-86, 2022. [DOI:10.1016/j.isatra.2021.05.036]
11. [11] R. Wang, Z. YunNing, Y. Chen, X. Chen, and X. Lei, "Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: an adaptive sliding mode control approach", Nonlinear Dynamics, Vol. 100, 1275-1287, 2020. [DOI:10.1007/s11071-020-05574-x]
12. [12] T. Chen, H. Yang, and J. Yuan, "Event-Triggered Adaptive Neural Network Backstepping Sliding Mode Control for Fractional Order Chaotic Systems Synchronization With Input Delay", IEEE Access, Vol. 9, 100868-100881, 2021. 10.1109/ACCESS.2021.3097159 [DOI:10.1109/ACCESS.2021.3097159]
13. [13] Z. Sun, "Synchronization of fractional-order chaotic systems with non-identical orders, unknown parameters and disturbances via sliding mode control", Chinese Journal of Physics, Vol. 56, 2553-2559, 2018. [DOI:10.1016/j.cjph.2018.08.007]
14. [14] V. Vafaei, H. Kheiri, and A. J. Akbarfam, "Synchronization of fractional‐order chaotic systems with disturbances via novel fractional‐integer integral sliding mode control and application to neuron models", Mathematical Methods in the Applied Sciences, Vol. 42, 2761-2773, 2019. [DOI:10.1002/mma.5548]
15. [15] J. Jiang, D. Cao, and H. Chen, "Sliding mode control for a class of variable-order fractional chaotic systems", Journal of the Franklin Institute, Vol. 357, 10127-10158, 2020. [DOI:10.1016/j.jfranklin.2019.11.036]
16. [16] M. Taheri, C. Zhang, Z. R. Berardehi, Y. Chen, & M. Roohi, "No-chatter model-free sliding mode control for synchronization of chaotic fractional-order systems with application in image encryption". Multimedia Tools and Applications, 1-31, 2022. [DOI:10.1007/s11042-022-12329-w]
17. [17] Y. Gu, J. Sun, & X. Fu, "A Novel Robust Neural Network Sliding-Mode Control Method for Synchronizing Fractional Order Chaotic Systems in the Presence of Uncertainty, Disturbance and Time-Varying Delay",. Journal of Electrical Engineering & Technology, 1-11, 2022. [DOI:10.1007/s42835-022-01225-w]
18. [18] M. M. Al-sawalha, "Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control", Advances in Difference Equations, Vol. 417, 1-17, 2020. [DOI:10.1186/s13662-020-02876-7]
19. [19] D. Zhu, W. Zhang, C. Liu, and J. Duan, "Fractional-Order Hyperbolic Tangent Sliding Mode Control for Chaotic Oscillation in Power System", Mathematical Problems in Engineering, 1-10, 2021, doi.org/10.1155/2021/6691941 [DOI:10.1155/2021/6691941]
20. [20] Y. Tong, Z. Cao, H. Yang, C. Li, and W. Yu, "Design of a five-dimensional fractional-order chaotic system and its sliding mode control", Indian Journal of Physics, Vol. 96, 855-867, 2022. [DOI:10.1007/s12648-021-02181-3]
21. [21] Y. Chen, C. Tang, and M. Roohi, "Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: an application in secure communications", Journal of the Franklin Institute, Vol. 358, 8109-8137, 2021. [DOI:10.1016/j.jfranklin.2021.08.007]
22. [22] S. Z. Mirrezapour, A. Zare, & M. Hallaji, (2022). "A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances". Journal of Vibration and Control, Vol. 28(7-8), 773-785, 2022. [DOI:10.1177/1077546320982453]
23. [23] W. Gu, Y. Yu, and W. Hu, "Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time delay", IEEE/CAA Journal of Automatica Sinica, Vol. 4, 107-113, 2017. 10.1109/JAS.2017.7510340 [DOI:10.1109/JAS.2017.7510340]
24. [24] A. Mohammadzadeh, and S. Ghaemi, "Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC", Nonlinear Dynamics, Vol. 88, 2993-3002, 2017. [DOI:10.1007/s11071-017-3427-z]
25. [25] Q. Liu, and J. Wang, "A one-layer recurrent neural network with a discontinuous activation function for linear programming", Neural Computation, Vol. 20, 1366-1383, 2008. 10.1109/TNN.2007.910736 [DOI:10.1162/neco.2007.03-07-488]
26. [26] S. Liu, and J. Wang, "A simplified dual neural network for quadratic programming with its KWTA application", IEEE Transactions on Neural Networks, Vol. 17, 1500-1510, 2006. 10.1109/TNN.2006.881046 [DOI:10.1109/TNN.2006.881046]
27. [27] Y. Xia, J. Wang, and W. Guo, "Two projection neural networks with reduced model complexity for nonlinear programming", IEEE transactions on neural networks and learning systems, Vol. 31, 2020-2029, 2019. 10.1109/TNNLS.2019.2927639 [DOI:10.1109/TNNLS.2019.2927639]
28. [28] Hassan, A. A., El-Habrouk, M., and Deghedie, S., "Inverse kinematics of redundant manipulators formulated as quadratic programming optimization problem solved using recurrent neural networks: A review", Robotica, Vol. 38, 1495-1512, 2020. [DOI:10.1017/S0263574719001590]
29. [29] C. Liu, C. Li, and W. Li, "Computationally efficient MPC for path following of underactuated marine vessels using projection neural network", Neural Computing and Applications, Vol. 32, 7455-7464, 2020. [DOI:10.1007/s00521-019-04273-y]
30. [30] Y. Yu, H. X. Li, S. Wang, & J. Yu, "Dynamic analysis of a fractional-order Lorenz chaotic system", Chaos, Solitons & Fractals, 42(2), 1181-1189, 2009. [DOI:10.1016/j.chaos.2009.03.016]
31. [31] K. Diethelm, N. J. Ford, and A. D. Freed, "A predictor-corrector approach for the numerical solution of fractional differential equations", Nonlinear Dynamics, Vol. 29, 3-22, 2002. [DOI:10.1023/A:1016592219341]
32. [32] M. Pourmahmood, S. Khanmohammadi, and G. Alizadeh, "Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller", Communications in Nonlinear Science and Numerical Simulation, Vol. 16, 2853-2868, 2021. [DOI:10.1016/j.cnsns.2010.09.038]
33. [33] D. Kinderlehrer, and G. Stampacchia, An introduction to variational inequalities and their applications. Society for Industrial and Applied Mathematics, 2000. [DOI:10.1137/1023111]
34. [34] A. Modiri, and S. Mobayen, "Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems", ISA transactions, Vol. 105, 33-50, 2020. [DOI:10.1016/j.isatra.2020.05.039]
35. [35] Salimi M. A novel approach for sliding mode controller design and parameters selection in flyback switching power supplies . Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :1-12
36. [36] badi A, vali A, behnamgol V. Acceleration autopilot design using backstepping adaptive second-order sliding mode for pitch channel Flying object. Journal of Iranian Association of Electrical and Electronics Engineers 2020; 17 (3) :51-62

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)