دوره 21، شماره 2 - ( مجله مهندسی برق و الکترونیک ایران - جلد 21 شماره 2 1403 )                   جلد 21 شماره 2 صفحات 95-87 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mortezaeei R, Hosseini Aliabadi M, Javadi S. Analytical Modeling of Magnetic Field Density Distribution in Different Regions of A Permanent Magnet Synchronous Motor through Subdomain Field Modeling Method. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :87-95
URL: http://jiaeee.com/article-1-1618-fa.html
مرتضایی سیدرضا، حسینی علی آبادی محمود، جوادی شهرام. مدل‌سازی تحلیلی توزیع چگالی میدان مغناطیسی در نواحی مختلف یک موتور سنکرون مغناطیس دائم به روش مدل‌سازی میدان زیردامنه. نشریه مهندسی برق و الکترونیک ایران. 1403; 21 (2) :87-95

URL: http://jiaeee.com/article-1-1618-fa.html


گروه مهندسی برق- دانشکده فنی و مهندسی- واحد تهران مرکزی- دانشگاه آزاد اسلامی
چکیده:   (1596 مشاهده)
در این مقاله یک روش تحلیلی مبتنی بر روش زیر دامنه برای مدل‌سازی توزیع میدان مغناطیسی اطراف یک موتور سنکرون مغناطیس دائم ارائه شده است. روش مدل‌سازی مبتنی بر محاسبه بردار پتانسیل اسکالر و تخمین توزیع چگالی میدان مغناطیسی در هر زیردامنه است بطوریکه ابتدا حوزه میدان مغناطیسی موتور تحت مطالعه به شش زیر دامنه شامل شفت روتور، هسته روتور، آهنرباهای دائمی، شکاف هوایی، هسته استاتور و ناحیه بیرونی تقسیم شده و سپس معادلات دیفرانسیلی لاپلاسی/ شبه پواسونی میدان مغناطیسی در سیستم مختصات قطبی با استفاده از تکنیک جداسازی متغیرها، سری تیلور و بسط سری فوریه در این زیر دامنه‌ها فرمول‌بندی و حل شده و نهایتاً یک رابطه تحلیلی وابسته به متغیرهای هندسی و جنس مواد بکار رفته در موتور تحت مطالعه به‌منظور تخمین اندازه چگالی میدان در ناحیه بیرونی موتور ارائه شده است. نتایج نشان می‌دهد که مدل‌سازی انجام شده برای استفاده در برنامه‌های طراحی، به‌منظور اجتناب از محاسبات طولانی مدت شبیه‌سازی‌های المان محدود مناسب خواهد بود. همچنین مدل‌سازی میدان‌های مغناطیسی اطراف یک موتور سنکرون مغناطیس دائم به‌منظور کنترل و تشخیص عیب در کاربردهای عملی قابل بهره‌برداری خواهد بود.
متن کامل [PDF 1050 kb]   (589 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: قدرت
دریافت: 1402/5/6 | پذیرش: 1402/7/3 | انتشار: 1403/4/4

فهرست منابع
1. [1] Z. Xing, X. Wang, W. Zhao, X. Li, L. Xiong, and X. Zhang, "Optimization Design of Interior Permanent Magnet Synchronous Motor with U-Shaped Rotor for Low-Level Torque Ripple and Electromagnetic Vibration", IEEE Transactions on Transportation Electrification, pp. 1-1, 2023, doi: 10.1109/TTE.2023.3288892. [DOI:10.1109/TTE.2023.3288892]
2. [2] G. Lei, J. Zhu, Y. Guo, C. Liu, and B. Ma, "A Review of Design Optimization Methods for Electrical Machines", Energies, vol. 10, no. 12, p. 1962, 2017, doi: https://doi.org/10.3390/en10121962 [DOI:10.3390/en10121962.]
3. [3] A. Shiri and S. D. Sadr, "Design Optimization and Construction of Double-Sided Linear Induction Motor", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 19, no. 4, pp. 185-193, 2022, doi: 10.52547/jiaeee.19.4.185. [DOI:10.52547/jiaeee.19.4.185]
4. [4] m. d. kheiri and a. tavakoli, "Adaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 19, no. 4, pp. 105-116, 2022, doi: 10.52547/jiaeee.19.4.105. [DOI:10.52547/jiaeee.19.4.105]
5. [5] C. Lee and I. G. Jang, "Topology Optimization of the IPMSMs Considering Both the MTPA and FW Controls Under the Voltage and Current Limitations", IEEE Transactions on Industrial Electronics, vol. 70, no. 8, pp. 8244-8253, 2023, doi: 10.1109/TIE.2023.3234136. [DOI:10.1109/TIE.2023.3234136]
6. [6] G. Lei, T. Wang, J. Zhu, Y. Guo, and S. Wang, "System-Level Design Optimization Method for Electrical Drive Systems-Robust Approach", IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4702-4713, 2015, doi: 10.1109/TIE.2015.2404305. [DOI:10.1109/TIE.2015.2404305]
7. [7] M. A. Khan, I. Husain, M. R. Islam, and J. T. Klass, "Design of Experiments to Address Manufacturing Tolerances and Process Variations Influencing Cogging Torque and Back EMF in the Mass Production of the Permanent-Magnet Synchronous Motors", IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 346-355, 2014, doi: 10.1109/TIA.2013.2271473. [DOI:10.1109/TIA.2013.2271473]
8. [8] S. Li, W. Tong, S. Wu, and R. Tang, "Analytical Model for Electromagnetic Performance Prediction of IPM Motors Considering Different Rotor Topologies", IEEE Transactions on Industry Applications, pp. 1-10, 2023, doi: 10.1109/TIA.2023.3268639. [DOI:10.1109/TIA.2023.3268639]
9. [9] B. Guo, Z. Djelloul-Khedda, and F. Dubas, "Nonlinear Analytical Solution in Axial Flux Permanent Magnet Machines using Scalar Potential", IEEE Transactions on Industrial Electronics, pp. 1-10, 2023, doi: 10.1109/TIE.2023.3273247. [DOI:10.1109/TIE.2023.3273247]
10. [10] C. Shi, L. Peng, Z. Zhang, and T. Shi, "Analytical Modeling and Analysis of Permanent-Magnet Motor with Demagnetization Fault", Sensors, vol. 22, no. 23, p. 9440, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/23/9440. [DOI:10.3390/s22239440] [PMID] []
11. [11] F. Rezaee-Alam, M. Hosseini, and B. Rezaeealam, "A new hybrid analytical model for electromagnetic analysis of wound rotor induction motors", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 6, p. e3022, 2022, doi: https://doi.org/10.1002/jnm.3022 [DOI:10.1002/jnm.3022.]
12. [12] Z. Li, X. Huang, Y. Yu, D. Jiang, L. Wu, and T. Shi, "Nonlinear Analytical Modelling for Surface-Mounted Permanent Magnet Motors with Magnet Defect Fault", IEEE Transactions on Energy Conversion, pp. 1-1, 2022, doi: 10.1109/TEC.2022.3145637. [DOI:10.1109/TEC.2022.3145637]
13. [13] Z. Djelloul Khedda, K. Boughrara, F. Dubas, B. Guo, and E. H. Ailam, "Two-dimensional steady-state thermal analytical model of permanent-magnet synchronous machines operating in generator mode", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 41, no. 1, pp. 125-154, 2022, doi: 10.1108/COMPEL-07-2021-0226. [DOI:10.1108/COMPEL-07-2021-0226]
14. [14] A. Abbas and A. Iqbal, "A subdomain model for armature reaction field and open-circuit field prediction in consequent pole permanent magnet machines", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 6, p. e3023, 2022, doi: https://doi.org/10.1002/jnm.3023 [DOI:10.1002/jnm.3023.]
15. [15] M. Zhu, L. Wu, D. Wang, Y. Fang, and P. Tan, "Analytical prediction of electromagnetic performance of dual-stator consequent-pole PM machines based on subdomain model accounting for tooth-tips", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 40, no. 3, pp. 289-308, 2021, doi: 10.1108/COMPEL-01-2020-0063. [DOI:10.1108/COMPEL-01-2020-0063]
16. [16] W. Ullah, F. Khan, E. Sulaiman, I. Sami, and J. S. Ro, "Analytical Sub-Domain Model for Magnetic Field Computation in Segmented Permanent Magnet Switched Flux Consequent Pole Machine", IEEE Access, vol. 9, pp. 3774-3783, 2021, doi: 10.1109/ACCESS.2020.3047742. [DOI:10.1109/ACCESS.2020.3047742]
17. [17] C. Tang, M. Shen, Y. Fang, and P. D. Pfister, "Comparison of Subdomain, Complex Permeance, and Relative Permeance Models for a Wide Family of Permanent-Magnet Machines", IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, 2021, doi: 10.1109/TMAG.2020.3009416. [DOI:10.1109/TMAG.2020.3009416]
18. [18] A. Jabbari and F. Dubas, "Analytical Modelling of Magnetic Field Distribution in Spoke Type Permanent Magnet Machines", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 17, no. 3, pp. 141-151, 2020. [Online]. Available: http://jiaeee.com/article-1-423-fa.html.
19. [19] T. Lubin, S. Mezani, and A. Rezzoug, "Exact Analytical Method for Magnetic Field Computation in the Air Gap of Cylindrical Electrical Machines Considering Slotting Effects", IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1092-1099, 2010, doi: 10.1109/TMAG.2009.2036257. [DOI:10.1109/TMAG.2009.2036257]
20. [20] J. Fu and C. Zhu, "Subdomain Model for Predicting Magnetic Field in Slotted Surface Mounted Permanent-Magnet Machines With Rotor Eccentricity", IEEE Transactions on Magnetics, vol. 48, no. 5, pp. 1906-1917, 2012, doi: 10.1109/TMAG.2011.2178250. [DOI:10.1109/TMAG.2011.2178250]
21. [21] V. Z. Faradonbeh, A. Rahideh, M. M. Ghahfarokhi, E. Amiri, A. D. Aliabad, and G. A. Markadeh, "Analytical Modeling of Slotted, Surface-Mounted Permanent Magnet Synchronous Motors With Different Rotor Frames and Magnet Shapes", IEEE Transactions on Magnetics, vol. 57, no. 1, pp. 1-13, 2021, doi: 10.1109/TMAG.2020.3032648. [DOI:10.1109/TMAG.2020.3032648]
22. [22] Z. Q. Zhu, L. J. Wu, and Z. P. Xia, "An Accurate Subdomain Model for Magnetic Field Computation in Slotted Surface-Mounted Permanent-Magnet Machines", IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1100-1115, 2010, doi: 10.1109/TMAG.2009.2038153. [DOI:10.1109/TMAG.2009.2038153]
23. [23] W. Xinghua, L. Qingfu, W. Shuhong, and L. Qunfeng, "Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brushless DC motors", IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 424-432, 2003, doi: 10.1109/TEC.2003.815852. [DOI:10.1109/TEC.2003.815852]
24. [24] L. J. Wu, Z. Q. Zhu, D. Staton, M. Popescu, and D. Hawkins, "Subdomain Model for Predicting Armature Reaction Field of Surface-Mounted Permanent-Magnet Machines Accounting for Tooth-Tips", IEEE Transactions on Magnetics, vol. 47, no. 4, pp. 812-822, 2011, doi: 10.1109/TMAG.2011.2104969. [DOI:10.1109/TMAG.2011.2104969]
25. [25] A. Rahideh and T. Korakianitis, "Analytical Open-Circuit Magnetic Field Distribution of Slotless Brushless Permanent-Magnet Machines With Rotor Eccentricity", IEEE Transactions on Magnetics, vol. 47, no. 12, pp. 4791-4808, 2011, doi: 10.1109/TMAG.2011.2159987. [DOI:10.1109/TMAG.2011.2159987]
26. [26] P. Kumar and P. Bauer, "Improved analytical model of a permanent-magnet brushless DC motor", IEEE Transactions on Magnetics, vol. 44, no. 10, pp. 2299-2309, 2008. [DOI:10.1109/TMAG.2008.2001450]
27. [27] S. R. Mortezaei, M. H. Aliabadi, and S. Javadi, "Analytical calculation and finite element evaluation of electromagnetic leakage field distribution in surface-mounted permanent magnet synchronous motors taking the rotor eccentricity effect into account", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. ahead-of-print, no. ahead-of-print, 2021, doi: 10.1108/COMPEL-05-2021-0171. [DOI:10.1108/COMPEL-05-2021-0171]
28. [28] r. mortezaeei, M. Hosseini Aliabadi, and S. Javadi, "The effect of geometrical parameters and materials on the distribution of magnetic field density in a permanent magnet synchronous motor through analytical modeling", Iranian journal of Marine technology, pp. -, 2023, doi: 10.22034/ijmt.2023.544047.1805.
29. [29] M. Rostami, P. Naderi, and A. Shiri, "Modelling and analysis of permanent magnet vernier machine using flexible magnetic equivalent circuit method", IET Science, Measurement & Technology, vol. 16, no. 3, pp. 160-170, 2022. [DOI:10.1049/smt2.12094]
30. [30] M. Rostami, P. Naderi, and A. Shiri, "Intern-turn fault modeling and diagnosis in permanent magnet vernier machine using modified magnetic equivalent circuit method", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 41, no. 1, pp. 410-426, 2022, doi: 10.1108/COMPEL-06-2021-0201. [DOI:10.1108/COMPEL-06-2021-0201]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb