XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

RANJBAR S. Online Estimation of Fault Location in Distribution Systems Based on Support Vector Machine from Wide Area Signals. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :123-134
URL: http://jiaeee.com/article-1-1529-en.html
Technical and Engineering Department, Velayat University, Iranshahr
Abstract:   (1151 Views)
This paper presents a new method for predicting fault location on distribution networks based on the support vector machine (SVM) technique. The proposed in an online non model based scheme which works based on the real data provided by wide area signals, performs as an intelligent indicator for online estimation of fault locations in distribution systems. In this case, for training intelligent SVM based indicator, a feature selection technique is used to find the best combination of the system phasor variables as input signal to the relay. For this purpose, several stable/unstable scenarios with the potential of oscillating dynamic behaviors are created by time domain transient stability simulation. The main merit of the proposed protection scheme is its ability for predicting instead of detection which can reasonably increase relay speed. The proposed approach is applied on IEEE 33-bus test system and the simulation results show promising performance for the SVM based relay.
 
Full-Text [PDF 981 kb]   (217 Downloads)    
Type of Article: Research | Subject: Power
Received: 2022/11/21 | Accepted: 2023/08/21 | Published: 2024/06/24

References
1. [1] K. Kalita, S. Anand and S. K. Parida, "A Novel Non-Iterative Fault Location Algorithm for Transmission Line With Unsynchronized Terminal", in IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1917-1920, June 2021, doi: 10.1109/TPWRD.2021.3054235. [DOI:10.1109/TPWRD.2021.3054235]
2. [2] Z. Wang, Z. Chen and M. Paolone, "A Data-Driven Fault Location Algorithm Based on the Electromagnetic Time Reversal in Mismatched Media", in IEEE Transactions on Power Delivery, vol. 37, no. 5, pp. 3709-3721, Oct. 2022, doi: 10.1109/TPWRD.2021.3135429. [DOI:10.1109/TPWRD.2021.3135429]
3. [3] H. Shu, X. Liu and X. Tian, "Single-Ended Fault Location for Hybrid Feeders Based on Characteristic Distribution of Traveling Wave Along a Line", in IEEE Transactions on Power Delivery, vol. 36, no. 1, pp. 339-350, Feb. 2021, doi: 10.1109/TPWRD.2020.2976691. [DOI:10.1109/TPWRD.2020.2976691]
4. [4] C. Galvez and A. Abur, "Fault Location in Power Networks Using a Sparse Set of Digital Fault Recorders", in IEEE Transactions on Smart Grid, vol. 13, no. 5, pp. 3468-3480, Sept. 2022, doi: 10.1109/TSG.2022.3168904. [DOI:10.1109/TSG.2022.3168904]
5. [5] K. Kalita, S. Anand and S. K. Parida, "An Improved Parameter-Free Fault Locator for Untransposed Line With Unsynchronized Terminals", in IEEE Transactions on Power Delivery, vol. 37, no. 6, pp. 5480-5483, Dec. 2022, doi: 10.1109/TPWRD.2022.3207062. [DOI:10.1109/TPWRD.2022.3207062]
6. [6] J. Qiao, X. Yin, Y. Wang, L. Tan and Q. Lu, "A Precise Stator Ground Fault Location Method for Large Generators Based on Potential Analysis of Slot Conductors", in IEEE Transactions on Power Delivery, vol. 37, no. 6, pp. 5203-5213, Dec. 2022, doi: 10.1109/TPWRD.2022.3174198. [DOI:10.1109/TPWRD.2022.3174198]
7. [7] P. Chang, G. Song, J. Hou and R. Xu, "A Single-Terminal Fault Location Method for Transmission Lines Integrated by Inverter-Type Source", in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 1704-1713, June 2022, doi: 10.1109/TPWRD.2021.3096222. [DOI:10.1109/TPWRD.2021.3096222]
8. [8] D. Wang, V. Psaras, A. A. S. Emhemed and G. M. Burt, "A Novel Fault Let-Through Energy Based Fault Location for LVDC Distribution Networks", in IEEE Transactions on Power Delivery, vol. 36, no. 2, pp. 966-974, April 2021, doi: 10.1109/TPWRD.2020.2998409. [DOI:10.1109/TPWRD.2020.2998409]
9. [9] L. Kong and H. Nian, "Fault Detection and Location Method for Mesh-Type DC Microgrid Using Pearson Correlation Coefficient", in IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1428-1439, June 2021, doi: 10.1109/TPWRD.2020.3008924. [DOI:10.1109/TPWRD.2020.3008924]
10. [10] M. R. Jegarluei, T. E. H. El-Gorashi, J. M. H. Elmirghani and S. Azizi, "A Generalized Closed-From Solution for Wide-Area Fault Location by Characterizing the Distributions of Superimposed Errors", in IEEE Transactions on Power Delivery, vol. 37, no. 6, pp. 5484-5487, Dec. 2022, doi: 10.1109/TPWRD.2022.3214746. [DOI:10.1109/TPWRD.2022.3214746]
11. [11] Y. Jiang, "Data-Driven Probabilistic Fault Location of Electric Power Distribution Systems Incorporating Data Uncertainties", in IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4522-4534, Sept. 2021, doi: 10.1109/TSG.2021.3070550. [DOI:10.1109/TSG.2021.3070550]
12. [12] J. Li, Y. Liu, C. Li, D. Zeng, H. Li and G. Wang, "An FTU-Based Method for Locating Single-Phase High-Impedance Faults Using Transient Zero-Sequence Admittance in Resonant Grounding Systems", in IEEE Transactions on Power Delivery, vol. 37, no. 2, pp. 913-922, April 2022, doi: 10.1109/TPWRD.2021.3074217. [DOI:10.1109/TPWRD.2021.3074217]
13. [13] D. F. Friedemann, D. Motter and R. A. Oliveira, "Stator-Ground Fault Location Method Based on Third-Harmonic Measures in High-Impedance Grounded Generators", in IEEE Transactions on Power Delivery, vol. 36, no. 2, pp. 794-802, April 2021, doi: 10.1109/TPWRD.2020.2993219. [DOI:10.1109/TPWRD.2020.2993219]
14. [14] B. Wang, Y. Liu, D. Lu, K. Yue and Y. Nie, "Unsynchronized Parameter-Free Fault Location for Two or Three Terminal Double-Circuit Transmission Lines Sharing the Same Tower via Unscented Kalman Filter", in IEEE Transactions on Power Delivery, vol. 38, no. 3, pp. 1731-1746, June 2023, doi: 10.1109/TPWRD.2022.3223410. [DOI:10.1109/TPWRD.2022.3223410]
15. [15] B. Wang, Y. Liu, D. Lu, K. Yue and R. Fan, "Transmission Line Fault Location in MMC-HVDC Grids Based on Dynamic State Estimation and Gradient Descent", in IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1714-1725, June 2021, doi: 10.1109/TPWRD.2020.3013755. [DOI:10.1109/TPWRD.2020.3013755]
16. [16] B. Yang, K. Jia, Q. Liu, L. Zheng and T. Bi, "Faulted Line-Section Location in Distribution System With Inverter-Interfaced DGs Using Sparse Meters", in IEEE Transactions on Smart Grid, vol. 14, no. 1, pp. 413-423, Jan. 2023, doi: 10.1109/TSG.2022.3186541. [DOI:10.1109/TSG.2022.3186541]
17. [17] C. A. Apostolopoulos, C. G. Arsoniadis, P. S. Georgilakis and V. C. Nikolaidis, "Unsynchronized Measurements Based Fault Location Algorithm for Active Distribution Systems Without Requiring Source Impedances", in IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 2071-2082, June 2022, doi: 10.1109/TPWRD.2021.3103870. [DOI:10.1109/TPWRD.2021.3103870]
18. [18] X. Diao, F. Liu, Y. Song, M. Xu, Y. Zhuang and X. Zha, "An Integral Fault Location Algorithm Based on a Modified T-Source Circuit Breaker for Flexible DC Distribution Networks", in IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 2861-2871, Oct. 2021, doi: 10.1109/TPWRD.2020.3028423. [DOI:10.1109/TPWRD.2020.3028423]
19. [19] C. Galvez and A. Abur, "Fault Location in Active Distribution Networks Containing Distributed Energy Resources (DERs)", in IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 3128-3139, Oct. 2021, doi: 10.1109/TPWRD.2020.3034179. [DOI:10.1109/TPWRD.2020.3034179]
20. [20] N. Bayati, H. R. Baghaee, A. Hajizadeh, M. Soltani, Z. Lin and M. Savaghebi, "Local Fault Location in Meshed DC Microgrids Based On Parameter Estimation Technique", in IEEE Systems Journal, vol. 16, no. 1, pp. 1606-1615, March 2022, doi: 10.1109/JSYST.2021.3107905. [DOI:10.1109/JSYST.2021.3107905]
21. [21] دشتی، رحمان. قاسمی، محسن. "مکان‫یابی خطا در شبکه توزیع با حضور منابع تولید پراکنده به روش امپدانسی با استفاده از مدل خط متوسط"، نشریه مهندسی برق و الکترونیک ایران. ۱۳۹۶; ۱۴ (۳) :۷۹-۹۰
22. [22] براتی، جواد. درودی، عارف. "مکان‌یابی خطا در خطوط انتقال با حضور محدودکننده جریان خطا"، نشریه مهندسی برق و الکترونیک ایران. ۱۳۹۶; ۱۴ (۳) :۹۹-۱۰۷
23. [23] خزاعی، محمدحسین. حق‫جو، فرهاد. "الگوریتم جامعی برای مکان یابی خطا در خطوط انتقال دو مداره و چند پایانه ای (بیش از سه پایانه) مبتنی بر داده های PMU"، نشریه مهندسی برق و الکترونیک ایران. ۱۳۹۶; ۱۴ (۱) :۱-۱۰

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb