1. [1] R. Dashti, M. Daisy, H. Mirshekali, H. R. Shaker, and M. H. Aliabadi, "A Survey of Fault Prediction and Location Methods in Electrical Energy Distribution Network", Measurement, vol. 184, p. 109947, 2021. [
DOI:10.1016/j.measurement.2021.109947]
2. ]2[ دیسی، علی آبادی، جوادی، میارنعیمی، "مکانیابی خطاهای دوفاز در ریزشبکهها با حضور خودرو برقی و استفاده از مدل گسترده خط"، نشریه کیفیت و بهره وری صنعت برق ایران ، دوره 12، شماره 1، 1402
3. [3] M. H. Khazaei and F. Haghjoo, "A Comprehensive PMU-Based Fault Location Algorithm for Double Circuit and Multi-Terminal Transmission Lines", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 14, no. 1, pp. 1-10, 2017. [Online]. Available: http://jiaeee.com/article-1-323-en.html
4. [4] R. Dashti, M. Daisy, H. R. Shaker, and M. Tahavori, "Impedance-based fault location method for four-wire power distribution networks", Ieee Access, vol. 6, pp. 1342-1349, 2017. [
DOI:10.1109/ACCESS.2017.2778427]
5. [5] R. Dashti and S. M. Salehizadeh, "Fault Location in Double Circuit MV Power Distribution Networks Using an Impedance Based Method", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 14, no. 1, pp. 11-17, 2017. [Online]. Available: http://jiaeee.com/article-1-324-fa.html
6. [6] R. Dashti, M. Ghasemi, and M. Daisy, "Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying π line model", Energy, vol. 159, pp. 344-360, 2018. [
DOI:10.1016/j.energy.2018.06.111]
7. [7] R. Dashti and M. Ghasemi, "Fault Location in Power Distribution Network with Presence of Distributed Generation Resources Using Impedance Based Method and Applying π Line Model", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 14, no. 3, pp. 79-90, 2017. [Online]. Available: http://jiaeee.com/article-1-451-fa.html
8. [8] O. Naidu and A. K. Pradhan, "Precise Traveling Wave-Based Transmission Line Fault Location Method Using Single-Ended Data", IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5197-5207, 2020. [
DOI:10.1109/TII.2020.3027584]
9. ]9[ دشتی، دیسی، جوادی، "مکانیابی خطای تک فاز به روش امپدانسی با بهرهگیری از روشهای شناسایی الگو"، نشریه كيفيت و بهرهوري در صنعت برق ايران، دوره 7، شماره 14، 1397
10. ]10[ دیسی، دشتی، "مکانیابی خطا در شبکههای توزیع با استفاده از ترکیب روش امپدانسی و فرورفتگی ولتاژ"، نشریه مهندسي برق و مهندسي کامپيوتر ايران - الف مهندسي برق، دوره 15، شماره 1، 1396
11. [11] M. Daisy, R. Dashti, and H. R. Shaker, "A new fault-location method for HVDC transmission-line based on DC components of voltage and current under line parameter uncertainty", Electrical Engineering, vol. 99, no. 2, pp. 573-582, 2017. [
DOI:10.1007/s00202-016-0384-3]
12. [12] E. Kamyab, M. Javidi, and J. Sadeh, "Fault Location in Three Terminal Transmission Lines: Time Domain Distributed Line Model and Synchronous Measurements", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 5, no. 1, pp. 59-67, 2008. [Online]. Available: http://jiaeee.com/article-1-246-fa.html
13. [13] N. Bayati, H. R. Baghaee, A. Hajizadeh, M. Soltani, Z. Lin, and M. Savaghebi, "Local fault location in meshed DC microgrids based on parameter estimation technique", IEEE Systems Journal, vol. 16, no. 1, pp. 1606-1615, 2021. [
DOI:10.1109/JSYST.2021.3107905]
14. [14] D. Wang, V. Psaras, A. A. Emhemed, and G. M. Burt, "A novel fault let-through energy based fault location for LVDC distribution networks", IEEE Transactions on Power Delivery, vol. 36, no. 2, pp. 966-974, 2020. [
DOI:10.1109/TPWRD.2020.2998409]
15. [15] Y. Yang, C. Huang, D. Zhou, and Y. Li, "Fault detection and location in multi-terminal DC microgrid based on local measurement", Electric Power Systems Research, vol. 194, p. 107047, 2021. [
DOI:10.1016/j.epsr.2021.107047]
16. [16] X. Feng, L. Qi, and J. Pan, "A novel fault location method and algorithm for DC distribution protection", IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1834-1840, 2017. [
DOI:10.1109/TIA.2017.2666083]
17. [17] D. Jayamaha, N. Lidula, and A. D. Rajapakse, "Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids", IEEE Access, vol. 7, pp. 145371-145384, 2019. [
DOI:10.1109/ACCESS.2019.2945397]
18. [18] A. Makkieh, V. Psaras, R. Peña-Alzola, D. Tzelepis, A. A. Emhemed, and G. M. Burt, "Fault location in DC microgrids based on a multiple capacitive earthing scheme", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3, pp. 2550-2559, 2020. [
DOI:10.1109/JESTPE.2020.2995946]
19. [19] A. Abdali, K. Mazlumi, and R. Noroozian, "High-speed fault detection and location in DC microgrids systems using Multi-Criterion System and neural network", Applied Soft Computing, vol. 79, pp. 341-353, 2019. [
DOI:10.1016/j.asoc.2019.03.051]
20. [20] C. Wang, P. Li, X. Xu, and H. Gao, "A DC Fault Location Method of Multiterminal Flexible DC Distribution Network", Mathematical Problems in Engineering, vol. 2022, 2022. [
DOI:10.1155/2022/8120857]
21. [21] A. Akbari Sharif, H. Kazemi karegar, and S. Esmaeilbeigi, "Fault Detection and Location In DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier", (in eng), Energy Engineering & Managment, Research vol. 11, no. 4, pp. 40-47, 2022, doi: 10.22052/11.4.40.
22. [22] Y. Yang, C. Huang, and Q. Xu, "A fault location method suitable for low-voltage DC line", IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 194-204, 2019. [
DOI:10.1109/TPWRD.2019.2930622]
23. [23] N. Bayati, H. R. Baghaee, A. Hajizadeh, and M. Soltani, "Localized protection of radial DC microgrids with high penetration of constant power loads", IEEE Systems Journal, vol. 15, no. 3, pp. 4145-4156, 2020. [
DOI:10.1109/JSYST.2020.2998059]
24. [24] L. Kong and H. Nian, "Fault detection and location method for mesh-type DC microgrid using pearson correlation coefficient", IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1428-1439, 2020. [
DOI:10.1109/TPWRD.2020.3008924]
25. [25] E. Christopher, M. Sumner, D. W. Thomas, X. Wang, and F. de Wildt, "Fault location in a zonal DC marine power system using active impedance estimation", IEEE Transactions on Industry Applications, vol. 49, no. 2, pp. 860-865, 2013. [
DOI:10.1109/TIA.2013.2243391]
26. [26] J.-D. Park, J. Candelaria, L. Ma, and K. Dunn, "DC ring-bus microgrid fault protection and identification of fault location", IEEE transactions on Power delivery, vol. 28, no. 4, pp. 2574-2584, 2013. [
DOI:10.1109/TPWRD.2013.2267750]
27. [27] R. Mohanty, U. S. M. Balaji, and A. K. Pradhan, "An accurate noniterative fault-location technique for low-voltage DC microgrid", IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 475-481, 2015. [
DOI:10.1109/TPWRD.2015.2456934]
28. [28] S. Dhar, R. K. Patnaik, and P. Dash, "Fault detection and location of photovoltaic based DC microgrid using differential protection strategy", IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4303-4312, 2017. [
DOI:10.1109/TSG.2017.2654267]
29. [29] S. Coelho et al., "A unified power converter for solar PV and energy storage in dc microgrids", Batteries, vol. 8, no. 10, p. 143, 2022. [
DOI:10.3390/batteries8100143]
30. [30]"Mathworks.com",https://www.mathworks.com/matlabcentral/fileexchange/112450-dc-microgrid-model (accessed(.
31. [31] A. A. Sharif, H. K. Karegar, and S. Esmaeilbeigi, "Fault detection and location in dc microgrids by recurrent neural networks and decision tree classifier", in 2020 10th Smart Grid Conference (SGC), 2020: IEEE, pp. 1-6. [
DOI:10.1109/SGC52076.2020.9335743]
32. [32] S. K. Srivastva, R. K. Panda, S. S. Nagam, and A. Mohapatra, "Current Derivative based schemes for Fault Location in DC Microgrid", in 2019 8th International Conference on Power Systems (ICPS), 2019: IEEE, pp. 1-6. [
DOI:10.1109/ICPS48983.2019.9067619]