1. [1] X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, and X.-M. Zhang, "Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 9, pp. 3112-3125, 2020. [
DOI:10.1109/TSMC.2020.3010825]
2. [2] S. Xiao and J. Dong, "Distributed adaptive fuzzy fault-tolerant containment control for heterogeneous nonlinear multiagent systems", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 2, pp. 954-965, 2020. [
DOI:10.1109/TSMC.2020.3002944]
3. [3] C. Deng, C. Wen, W. Wang, X. Li, and D. Yue, "Distributed adaptive tracking control for high-order nonlinear multiagent systems over event-triggered communication", IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 1176-1183, 2022. [
DOI:10.1109/TAC.2022.3148384]
4. [4] S. Behnampour, M. Haghifam, A. Akhavein, and H. Siahkali, "Decentralized restoration of distribution network using a multi-agent system", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 19, no. 1, pp. 237-244, 2022. [Online]. Available: http://jiaeee.com/article-1-852-en.html. [
DOI:10.52547/jiaeee.19.1.237]
5. [5] N. Zamani, M. Kamali, J. Askari-Marnani, H. Kalantari, and A. G. Aghdam, "Fault-Tolerant Leader-Follower Controller for Uncertain Nonlinear Multi-Agent Systems", IEEE Transactions on Automation Science and Engineering, 2024. [
DOI:10.1109/TASE.2024.3506123]
6. [6] R. Gao, J. Huang, and L. Wang, "Leaderless consensus control of uncertain multi-agents systems with sensor and actuator attacks", Information Sciences, vol. 505, pp. 144-156, 2019. [
DOI:10.1016/j.ins.2019.07.075]
7. [7] J. Yu and Y. Shi, "Scaled group consensus in multiagent systems with first/second-order continuous dynamics", IEEE transactions on cybernetics, vol. 48, no. 8, pp. 2259-2271, 2017. [
DOI:10.1109/TCYB.2017.2731601]
8. [8] K. Chen, J. Wang, Y. Zhang, and Z. Liu, "Leader-following consensus for a class of nonlinear strick-feedback multiagent systems with state time-delays", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 7, pp. 2351-2361, 2018. [
DOI:10.1109/TSMC.2018.2813399]
9. [9] Y. Yang, W. He, Q.-L. Han, and C. Peng, "$ H_ {infty} $ Synchronization of Networked Master-Slave Oscillators With Delayed Position Data: The Positive Effects of Network-Induced Delays", IEEE Transactions on Cybernetics, vol. 49, no. 12, pp. 4090-4102, 2018. [
DOI:10.1109/TCYB.2018.2857507]
10. [10] C. Gong, G. Zhu, and P. Shi, "Adaptive event-triggered and double-quantized consensus of leader-follower multiagent systems with semi-Markovian jump parameters", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 9, pp. 5867-5879, 2019. [
DOI:10.1109/TSMC.2019.2957530]
11. [11] X.-G. Guo, D.-C. Tan, C. K. Ahn, and J.-L. Wang, "Fully distributed adaptive fault-tolerant sliding-mode control for nonlinear leader-following multiagent systems with ANASs and IQCs", IEEE transactions on cybernetics, vol. 52, no. 5, pp. 2763-2774, 2020. [
DOI:10.1109/TCYB.2020.3023747]
12. [12] S. Chen, J. Guan, Y. Gao, and H. Yan, "Observer-based event-triggered tracking consensus of non-ideal general linear multi-agent systems", Journal of the Franklin Institute, vol. 356, no. 17, pp. 10355-10367, 2019. [
DOI:10.1016/j.jfranklin.2018.05.019]
13. [13] S. X. Ding, Advanced methods for fault diagnosis and fault-tolerant control. Springer, 2021. [
DOI:10.1007/978-3-662-62004-5]
14. [14] M. Rodrigues, H. Hamdi, N. B. Braiek, and D. Theilliol, "Observer-based fault tolerant control design for a class of LPV descriptor systems", Journal of the Franklin Institute, vol. 351, no. 6, pp. 3104-3125, 2014. [
DOI:10.1016/j.jfranklin.2014.02.016]
15. [15] S. S. Roshanravan S, "Integrated Fault-Tolerant Attitude Control of Quadrotor Using Reinforcement Learning", Journal of Iranian Association of Electrical and Electronics Engineers, pp. 3-16, 2025. [Online]. Available: http://jiaeee.com/article-1-1608-en.html. [
DOI:10.61882/jiaeee.22.2.3]
16. [16] Z.-H. Zhang and G.-H. Yang, "Distributed fault detection and isolation for multiagent systems: An interval observer approach", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 6, pp. 2220-2230, 2018. [
DOI:10.1109/TSMC.2018.2811390]
17. [17] X. Guo, G. Wei, and D. Ding, "Fault-tolerant consensus control for discrete-time multi-agent systems: A distributed adaptive sliding-mode scheme", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 7, pp. 2515-2519, 2023. [
DOI:10.1109/TCSII.2023.3243221]
18. [18] Q.-Y. Fan, C. Deng, X. Ge, and C.-C. Wang, "Distributed adaptive fault-tolerant control for heterogeneous multiagent systems with time-varying communication delays", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4362-4372, 2021. [
DOI:10.1109/TSMC.2021.3095263]
19. [19] S. Hajshirmohamadi, F. Sheikholeslam, and N. Meskin, "Actuator fault estimation for multi-agent systems: a sliding-mode observer-based approach", in 2019 IEEE Conference on Control Technology and Applications (CCTA), 2019: IEEE, pp. 1000-1005. [
DOI:10.1109/CCTA.2019.8920708]
20. [20] A. Taoufik, M. Defoort, M. Djemai, K. Busawon, and J. D. Sánchez-Torres, "Distributed global actuator fault-detection scheme for a class of linear multi-agent systems with disturbances", IFAC-PapersOnLine, vol. 53, no. 2, pp. 4202-4207, 2020. [
DOI:10.1016/j.ifacol.2020.12.2464]
21. [21] X. Wang and G.-H. Yang, "Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network", IEEE transactions on cybernetics, vol. 50, no. 5, pp. 1921-1930, 2019. [
DOI:10.1109/TCYB.2019.2901542]
22. [22] B.-s. Kwon, D. Kang, and K. Yi, "Fault-tolerant control with state and disturbance observers for vehicle active suspension systems", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 234, no. 7, pp. 1912-1929, 2020. [
DOI:10.1177/0954407019893835]
23. [23] S. Khodabandeh, H. Kharrati, and F. Hashemzadeh, "Control for leader-follower consensus of multi-agent systems with actuator faults using decentralized robust fault-tolerant control", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, no. 2, pp. 529-541, 2021. [
DOI:10.1007/s40998-020-00372-y]
24. [24] M. M. Share Pasand, "Luenberger‐type cubic observers for state estimation of linear systems", International Journal of Adaptive Control and Signal Processing, vol. 34, no. 9, pp. 1148-1161, 2020. [
DOI:10.1002/acs.3125]
25. [25] M. M. Share Pasand and A. A. Ahmadi, "Cubic observers for state estimation of nonlinear systems", Journal of Control, Automation and Electrical Systems, vol. 32, no. 5, pp. 1131-1142, 2021. [
DOI:10.1007/s40313-021-00758-1]
26. [26] F. Chen and W. Zhang, "LMI criteria for robust chaos synchronization of a class of chaotic systems", Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 12, pp. 3384-3393, 2007. [
DOI:10.1016/j.na.2006.10.020]
27. [27] " "Back Matter," Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, pp. 157-193, Jan-1994.." [
DOI:10.1137/1.9781611970777.bm]
28. [28] S. Hajshirmohamadi, F. Sheikholeslam, and N. Meskin, "Simultaneous actuator fault estimation and fault-tolerant tracking control for multi-agent systems: A sliding-mode observer-based approach", International Journal of Control, vol. 95, no. 2, pp. 447-460, 2022. [
DOI:10.1080/00207179.2020.1798023]