دوره 22، شماره 4 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 4 1404 )                   جلد 22 شماره 4 صفحات 113-104 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanshahi M, Maghfoori Farsangi M, Amini Boroujeni E. Observer-Based Fault-Tolerant Adaptive Control for Multi-Agent Systems Against Actuator Faults. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (4) :104-113
URL: http://jiaeee.com/article-1-1781-fa.html
حسن شاهی مهسا، مغفوری فرسنگی ملیحه، امینی بروجنی الهام. کنترل تطبیقی تحمل‌پذیر عیب سیستم های چند عاملی مبتنی بر رویتگر در حضور عیب عملگری. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (4) :104-113

URL: http://jiaeee.com/article-1-1781-fa.html


دانشکده فنی مهندسی- بخش برق- دانشگاه شهید باهنر
چکیده:   (517 مشاهده)
در این مقاله به منظور دستیابی به اجماع عامل‌ها در حضور عیب عملگری همزمان در چند عامل، کنترل‌کننده تحمل‌پذیر عیب مبتنی بر رویتگر برای سیستم‌های چندعاملی خطی رهبر-پیرو طراحی شده است. در این راستا، علاوه بر بهبود و توسعه عملکرد رویتگر کیوبیک برای شناسایی و مقابله با عیب‌ عملگری در سیستم‌های چندعاملی و افزایش دقت تخمین، عملکرد بهینه سیستم نیز با بهره‌گیری از قانون کنترل تطبیقی توزیع‌شده بررسی می شود. در چارچوب کنترلی پیشنهادی، با استفاده از اطلاعات حاصل از رویتگر و نیز حل نامساوی ماتریسی خطی، پایداری سیستم و اجماع عامل‌ها در حضور عیب  بهبود می یابد. بهبود عملکرد سیستم با استفاده از کنترل تحمل‌پذیر عیب پیشنهادی با شبیه سازی بر روی دو سیستم، نشان داده شده است.
متن کامل [PDF 1127 kb]   (74 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: کنترل
دریافت: 1403/9/27 | پذیرش: 1404/5/30 | انتشار: 1404/11/2

فهرست منابع
1. [1] X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, and X.-M. Zhang, "Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 9, pp. 3112-3125, 2020. [DOI:10.1109/TSMC.2020.3010825]
2. [2] S. Xiao and J. Dong, "Distributed adaptive fuzzy fault-tolerant containment control for heterogeneous nonlinear multiagent systems", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 2, pp. 954-965, 2020. [DOI:10.1109/TSMC.2020.3002944]
3. [3] C. Deng, C. Wen, W. Wang, X. Li, and D. Yue, "Distributed adaptive tracking control for high-order nonlinear multiagent systems over event-triggered communication", IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 1176-1183, 2022. [DOI:10.1109/TAC.2022.3148384]
4. [4] S. Behnampour, M. Haghifam, A. Akhavein, and H. Siahkali, "Decentralized restoration of distribution network using a multi-agent system", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 19, no. 1, pp. 237-244, 2022. [Online]. Available: http://jiaeee.com/article-1-852-en.html. [DOI:10.52547/jiaeee.19.1.237]
5. [5] N. Zamani, M. Kamali, J. Askari-Marnani, H. Kalantari, and A. G. Aghdam, "Fault-Tolerant Leader-Follower Controller for Uncertain Nonlinear Multi-Agent Systems", IEEE Transactions on Automation Science and Engineering, 2024. [DOI:10.1109/TASE.2024.3506123]
6. [6] R. Gao, J. Huang, and L. Wang, "Leaderless consensus control of uncertain multi-agents systems with sensor and actuator attacks", Information Sciences, vol. 505, pp. 144-156, 2019. [DOI:10.1016/j.ins.2019.07.075]
7. [7] J. Yu and Y. Shi, "Scaled group consensus in multiagent systems with first/second-order continuous dynamics", IEEE transactions on cybernetics, vol. 48, no. 8, pp. 2259-2271, 2017. [DOI:10.1109/TCYB.2017.2731601]
8. [8] K. Chen, J. Wang, Y. Zhang, and Z. Liu, "Leader-following consensus for a class of nonlinear strick-feedback multiagent systems with state time-delays", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 7, pp. 2351-2361, 2018. [DOI:10.1109/TSMC.2018.2813399]
9. [9] Y. Yang, W. He, Q.-L. Han, and C. Peng, "$ H_ {infty} $ Synchronization of Networked Master-Slave Oscillators With Delayed Position Data: The Positive Effects of Network-Induced Delays", IEEE Transactions on Cybernetics, vol. 49, no. 12, pp. 4090-4102, 2018. [DOI:10.1109/TCYB.2018.2857507]
10. [10] C. Gong, G. Zhu, and P. Shi, "Adaptive event-triggered and double-quantized consensus of leader-follower multiagent systems with semi-Markovian jump parameters", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 9, pp. 5867-5879, 2019. [DOI:10.1109/TSMC.2019.2957530]
11. [11] X.-G. Guo, D.-C. Tan, C. K. Ahn, and J.-L. Wang, "Fully distributed adaptive fault-tolerant sliding-mode control for nonlinear leader-following multiagent systems with ANASs and IQCs", IEEE transactions on cybernetics, vol. 52, no. 5, pp. 2763-2774, 2020. [DOI:10.1109/TCYB.2020.3023747]
12. [12] S. Chen, J. Guan, Y. Gao, and H. Yan, "Observer-based event-triggered tracking consensus of non-ideal general linear multi-agent systems", Journal of the Franklin Institute, vol. 356, no. 17, pp. 10355-10367, 2019. [DOI:10.1016/j.jfranklin.2018.05.019]
13. [13] S. X. Ding, Advanced methods for fault diagnosis and fault-tolerant control. Springer, 2021. [DOI:10.1007/978-3-662-62004-5]
14. [14] M. Rodrigues, H. Hamdi, N. B. Braiek, and D. Theilliol, "Observer-based fault tolerant control design for a class of LPV descriptor systems", Journal of the Franklin Institute, vol. 351, no. 6, pp. 3104-3125, 2014. [DOI:10.1016/j.jfranklin.2014.02.016]
15. [15] S. S. Roshanravan S, "Integrated Fault-Tolerant Attitude Control of Quadrotor Using Reinforcement Learning", Journal of Iranian Association of Electrical and Electronics Engineers, pp. 3-16, 2025. [Online]. Available: http://jiaeee.com/article-1-1608-en.html. [DOI:10.61882/jiaeee.22.2.3]
16. [16] Z.-H. Zhang and G.-H. Yang, "Distributed fault detection and isolation for multiagent systems: An interval observer approach", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 6, pp. 2220-2230, 2018. [DOI:10.1109/TSMC.2018.2811390]
17. [17] X. Guo, G. Wei, and D. Ding, "Fault-tolerant consensus control for discrete-time multi-agent systems: A distributed adaptive sliding-mode scheme", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 7, pp. 2515-2519, 2023. [DOI:10.1109/TCSII.2023.3243221]
18. [18] Q.-Y. Fan, C. Deng, X. Ge, and C.-C. Wang, "Distributed adaptive fault-tolerant control for heterogeneous multiagent systems with time-varying communication delays", IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4362-4372, 2021. [DOI:10.1109/TSMC.2021.3095263]
19. [19] S. Hajshirmohamadi, F. Sheikholeslam, and N. Meskin, "Actuator fault estimation for multi-agent systems: a sliding-mode observer-based approach", in 2019 IEEE Conference on Control Technology and Applications (CCTA), 2019: IEEE, pp. 1000-1005. [DOI:10.1109/CCTA.2019.8920708]
20. [20] A. Taoufik, M. Defoort, M. Djemai, K. Busawon, and J. D. Sánchez-Torres, "Distributed global actuator fault-detection scheme for a class of linear multi-agent systems with disturbances", IFAC-PapersOnLine, vol. 53, no. 2, pp. 4202-4207, 2020. [DOI:10.1016/j.ifacol.2020.12.2464]
21. [21] X. Wang and G.-H. Yang, "Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network", IEEE transactions on cybernetics, vol. 50, no. 5, pp. 1921-1930, 2019. [DOI:10.1109/TCYB.2019.2901542]
22. [22] B.-s. Kwon, D. Kang, and K. Yi, "Fault-tolerant control with state and disturbance observers for vehicle active suspension systems", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 234, no. 7, pp. 1912-1929, 2020. [DOI:10.1177/0954407019893835]
23. [23] S. Khodabandeh, H. Kharrati, and F. Hashemzadeh, "Control for leader-follower consensus of multi-agent systems with actuator faults using decentralized robust fault-tolerant control", Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, no. 2, pp. 529-541, 2021. [DOI:10.1007/s40998-020-00372-y]
24. [24] M. M. Share Pasand, "Luenberger‐type cubic observers for state estimation of linear systems", International Journal of Adaptive Control and Signal Processing, vol. 34, no. 9, pp. 1148-1161, 2020. [DOI:10.1002/acs.3125]
25. [25] M. M. Share Pasand and A. A. Ahmadi, "Cubic observers for state estimation of nonlinear systems", Journal of Control, Automation and Electrical Systems, vol. 32, no. 5, pp. 1131-1142, 2021. [DOI:10.1007/s40313-021-00758-1]
26. [26] F. Chen and W. Zhang, "LMI criteria for robust chaos synchronization of a class of chaotic systems", Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 12, pp. 3384-3393, 2007. [DOI:10.1016/j.na.2006.10.020]
27. [27] " "Back Matter," Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, pp. 157-193, Jan-1994.." [DOI:10.1137/1.9781611970777.bm]
28. [28] S. Hajshirmohamadi, F. Sheikholeslam, and N. Meskin, "Simultaneous actuator fault estimation and fault-tolerant tracking control for multi-agent systems: A sliding-mode observer-based approach", International Journal of Control, vol. 95, no. 2, pp. 447-460, 2022. [DOI:10.1080/00207179.2020.1798023]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb