1. [6] A. Kaba and E. Kıyak, "Optimizing a Kalman filter with an evolutionary algorithm for nonlinear quadrotor attitude dynamics," Journal of Computational Science, vol. 39, p. 101051, 2020. [
DOI:10.1016/j.jocs.2019.101051]
2. [7] J. Zhao, X. Wang, G. Gao, J. Na, H. Liu, and F. Luan, "Online adaptive parameter estimation for quadrotors," Algorithms, vol. 11, no. 11, p. 167, 2018. [
DOI:10.3390/a11110167]
3. [8] M. F. Sani, M. Shoaran, and G. Karimian, "Automatic landing of a low-cost quadrotor using monocular vision and Kalman filter in GPS-denied environments," Turkish Journal of Electrical Engineering and Computer Sciences, vol. 27, no. 3, pp. 1821-1838, 2019. [
DOI:10.3906/elk-1809-204]
4. [9] W. You, F. Li, L. Liao, and M. Huang, "Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of quadrotor UAV," Ieee Access, vol. 8, pp. 64971-64981, 2020. [
DOI:10.1109/ACCESS.2020.2985053]
5. [10] X. Chen, G. Zhang, C. Lu, and J. Cheng, "Quadrotor aircraft attitude control algorithm based on improved UKF," in IOP Conference Series: Earth and Environmental Science, 2019, vol. 233, no. 4: IOP Publishing, p. 042037. [
DOI:10.1088/1755-1315/233/4/042037]
6. [11] Y. Xu, Y. S. Shmaliy, X. Chen, Y. Li, and W. Ma, "Robust inertial navigation system/ultra wide band integrated indoor quadrotor localization employing adaptive interacting multiple model-unbiased finite impulse response/Kalman filter estimator," Aerospace Science and Technology, vol. 98, p. 105683, 2020. [
DOI:10.1016/j.ast.2020.105683]
7. [12] J. Gośliński, A. Kasiński, W. Giernacki, P. Owczarek, and S. Gardecki, "A study on coaxial quadrotor model parameter estimation: an application of the improved square root unscented Kalman filter," Journal of Intelligent & Robotic Systems, vol. 95, pp. 491-510, 2019. [
DOI:10.1007/s10846-018-0857-x]
8. [13] M. Rahmati, M. R. Arvan, and B. N. Araabi, "State estimation of VTOL octorotor for altitude control by using hybrid extended Kalman filter," in 2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA), 2017: IEEE, pp. 189-194. [
DOI:10.1109/ICCIAutom.2017.8258676]
9. [14] T. Chevet, M. Makarov, C. S. Maniu, I. Hinostroza, and P. Tarascon, "State estimation of an octorotor with unknown inputs. Application to radar imaging," in 2017 21st International Conference on System Theory, Control and Computing (ICSTCC), 2017: IEEE, pp. 723-728. [
DOI:10.1109/ICSTCC.2017.8107122]
10. [15] R. Doraiswami, L. Cheded, and M. Brinkmann, "Kalman-Filter-Based Accurate Trajectory Tracking and Fault-Tolerant Control of Quadrotor," in Proceedings of the 8th International Conference of Control Systems, and Robotics (CDSR'21), Virtual Conference, 2021, pp. 23-25. [
DOI:10.11159/cdsr21.302]
11. [16] G. Rigatos, P. Siano, M. Abbaszadeh, and A. Monteriu, "A nonlinear optimal control approach for the autonomous octorotor," Advanced Control for Applications: Engineering and Industrial Systems, vol. 2, no. 3, p. e50, 2020. [
DOI:10.1002/adc2.50]
12. [17] D. Merhy et al., "Guaranteed set-membership state estimation of an octorotor's position for radar applications," International Journal of Control, vol. 93, no. 11, pp. 2760-2770, 2020. [
DOI:10.1080/00207179.2020.1825796]
13. [18] A. Azarbani and R. Abbasi, "Optimal state estimation of air handling unit system without humidity sensor using unscented kalman filter," in 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), 2019: IEEE, pp. 1-6. [
DOI:10.1109/ICCIA49288.2019.9030871]
14. [19] V. G. Adir and A. M. Stoica, "Integral LQR control of a star-shaped octorotor," Incas Bulletin, vol. 4, no. 2, p. 3, 2012. [
DOI:10.13111/2066-8201.2012.4.2.1]