1. [1] شرفینژاد، سیدرضا. علیزاده، بیژن. "درستیسنجی صوری معماری مدیریت توان در سطح سیستم برای پردازندههای مدرن"، نشریه مهندسی برق و الکترونیک ایران، سال هجدهم، شماره چهارم، زمستان 1400.
2. [2] نوری، مسعود. بکرانی، مهدی. "آینه جریان توان پایین مبتنی بر ماسفت با گیت شبه شناور"، نشریه مهندسی برق و الکترونیک ایران، سال بیست و یکم، شماره اول، بهار 1403.
3. [3] P. Manoj, A. Jantsch, and M. Shafique, "SmartDPM: Machine Learning-Based Dynamic Power Management for Multi-Core Microprocessors", Journal of Low Power Electronics, vol. 14, no. 4, pp. 460-474, 2018. [
DOI:10.1166/jolpe.2018.1576]
4. [4] L. R. Juracy, M. T. Moreira, A. d. M. Amory, and F. G. Moraes, "A survey of aging monitors and reconfiguration techniques", arXiv preprint arXiv:2007.07829, 2020.
5. [5] S. Pagani, P. S. Manoj, A. Jantsch, and J. Henkel, "Machine learning for power, energy, and thermal management on multicore processors: A survey", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 1, pp. 101-116, 2018. [
DOI:10.1109/TCAD.2018.2878168]
6. [6] F. A. Endo, "Génération dynamique de code pour l'optimisation énergétique", Université Grenoble Alpes (ComUE), 2015.
7. [7] H. Jung and M. Pedram, "Supervised learning based power management for multicore processors", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1395-1408, 2010. [
DOI:10.1109/TCAD.2010.2059270]
8. [8] H. Shen, J. Lu, and Q. Qiu, "Learning based DVFS for simultaneous temperature, performance and energy management", in Thirteenth International Symposium on Quality Electronic Design (ISQED), 2012, pp. 747-754: IEEE. [
DOI:10.1109/ISQED.2012.6187575]
9. [9] Panda, Prasanta, Aruna Tripathy, and Kanhu Charan Bhuyan. "Reinforcement Learning-Based Dynamic Voltage and Frequency Scaling for Energy-Efficient Computing", 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2024. [
DOI:10.1109/ICDCECE60827.2024.10549241]
10. [10] K. Yu, "Deep Reinforcement Learning Based DVFS Algorithm Frameworks", SWINBURNE UNIVERSITY OF TECHNOLOGY, 2022.
11. [11] Tian, Zhongyuan, et al. "Collaborative power management through knowledge sharing among multiple devices", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38.7 (2018): 1203-1215. [
DOI:10.1109/TCAD.2018.2837131]
12. [12] S. K. Thethi and R. Kumar, "Power optimization of a single-core processor using LSTM based encoder-decoder model for online DVFS", Sādhanā, vol. 48, no. 2, p. 37, 2023. [
DOI:10.1007/s12046-023-02086-3]
13. [13] S. Yue, D. Zhu, Y. Wang, and M. Pedram, "Reinforcement learning based dynamic power management with a hybrid power supply", in 2012 IEEE 30th International Conference on Computer Design (ICCD), 2012, pp. 81-86: IEEE. [
DOI:10.1109/ICCD.2012.6378621]
14. [14] L. Li et al., "An Improved Q-Learning for System Power Optimization with Temperature, Performance and Energy Constraint Modeling", in 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). [
DOI:10.1109/TOCS50858.2020.9339699]
15. [15] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and B. Veeravalli, "Reinforcement learning-based inter-and intra-application thermal optimization for lifetime improvement of multicore systems", in Proceedings of the 51st Annual Design Automation Conference, 2014, pp. 1-6. [
DOI:10.1145/2593069.2593199]
16. [16] A. Iranfar, S. N. Shahsavani, M. Kamal, and A. Afzali-Kusha, "A heuristic machine learning-based algorithm for power and thermal management of heterogeneous MPSoCs", in 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 2015, pp. 291-296: IEEE. [
DOI:10.1109/ISLPED.2015.7273529]
17. [17] A. Yeganeh-Khaksar, M. Ansari, S. Safari, S. Yari-Karin, and A. Ejlali, "Ring-DVFS: Reliability-aware reinforcement learning-based DVFS for real-time embedded systems", IEEE Embedded Systems Letters, vol. 13, no. 3, pp. 146-149, 2020. [
DOI:10.1109/LES.2020.3033187]
18. [18] S. Kim, K. Bin, S. Ha, K. Lee, and S. Chong, "zTT: Learning-based DVFs with zero thermal throttling for mobile devices", in Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, 2021, pp. 41-53. [
DOI:10.1145/3458864.3468161]
19. [19] C. Robert, "Machine learning, a probabilistic perspective", ed: Taylor & Francis, 2014. [
DOI:10.1080/09332480.2014.914768]
20. [20] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine learning. Cambridge University Press, 2020. [
DOI:10.1017/9781108679930]
21. [21] Y. Wang and M. Pedram, "Model-free reinforcement learning and bayesian classification in system-level power management", IEEE Transactions on Computers, vol. 65, pp. 3713-3726, 2016. [
DOI:10.1109/TC.2016.2543219]
22. [22] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth, and S. Kaxiras, "Introducing DVFS-management in a full-system simulator", in 2013 IEEE 21st International symposium on modelling, analysis and simulation of computer and telecommunication systems, 2013, pp. 535-545: IEEE. [
DOI:10.1109/MASCOTS.2013.75]
23. [23] S. K. Thethi and R. Kumar, "Online DVFS using Deep Learning: Sequence to Sequence LSTM Networks with Attention", 2022. [
DOI:10.36227/techrxiv.21539991]
24. [24] Yu, Ke, et al. "An improved DVFS algorithm for energy-efficient real-time task scheduling", 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2020. [
DOI:10.1109/HPCC-SmartCity-DSS50907.2020.00033]
25. [25] Yu, Ke, et al. "A Framework for Deep Q-Learning Based Hybrid DVFS Algorithms for Real-Time Systems", 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021. [
DOI:10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00127]
26. [26] P. Pillai and K. G. Shin, "Real-time dynamic voltage scaling for low-power embedded operating systems", in Proceedings of the eighteenth ACM symposium on Operating systems principles, 2001, pp. 89-102. [
DOI:10.1145/502034.502044]
27. [27] Farzane Nakhaee et al. 2017. Lifetime improvement by exploiting aggressive voltage scaling during runtime of error-resilient applications. Integration, the VLSI Journal (2017). [
DOI:10.1016/j.vlsi.2017.10.013]
28. [28] Carvalho, Sidartha AL, Daniel C. Cunha, and Abel G. Silva-Filho. "On the use of nonlinear methods for low-power CPU frequency prediction based on Android context variables", 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). IEEE, 2016. [
DOI:10.1109/NCA.2016.7778627]
29. [29] Patterson, David A. "Computer Organization and Design", (2022).
30. [30] C. Robert, "Machine learning, a probabilistic perspective", ed: Taylor & Francis, 2014. [
DOI:10.1080/09332480.2014.914768]
31. [31] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine learning: Cambridge University Press, 2020. [
DOI:10.1017/9781108679930]
32. [32] Cormen, Thomas H., et al. Introduction to algorithms. MIT press, 2022.