XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamali Arand S, Rahmani-Fard J. Optimal design and analysis of a dual-3phase permanent magnet motor with fault tolerant capability. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :97-108
URL: http://jiaeee.com/article-1-1297-en.html
Electrical Engineering Department, Faculty of Engineering, Yasouj University, Yasouj, Iran
Abstract:   (1875 Views)
Compared with other multiphase machines, dual three-phase machines are able to take advantage of off-the-shelf three-phase inverters. Though the output torque decreases under post-fault conditions, the post-fault control strategies of them are simple, and their post-fault performance is steady. Therefore, the market of dual three-phase machines is promising in the future. In this paper, the design principle, operating characteristics behavior of the dual three-phase machine are investigated. Firstly, the winding arrangement and slot-pole combination of the dual three-phase machine is analyzed. The performance of different schemes iscompared, and the optimal scheme of winding arrangement and slot-pole combination for the dual three-phase machine is proposed. Moreover, the machine adopting the proposed scheme is designed. Secondly, operating characteristics of the dual three-phase machine under healthy conditions is analyzed. The possible fault terms of the machine is summarized. Comparing with conventional constant magnetomotive force, the advantage of the dual three-phase machine is significant. The effectiveness of the theoretical analysis and simulations is validated by the comparison.
Full-Text [PDF 1320 kb]   (601 Downloads)    
Type of Article: Research | Subject: Power
Received: 2021/04/11 | Accepted: 2021/08/1 | Published: 2024/06/24

References
1. [1] Kim, Tae Heoung. "The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements", Journal of IKEEE 24, no. 2 (2020): 441-445.
2. [2] Liu, Tianyi, Z. Q. Zhu, Zhan-Yuan Wu, David Stone, and Martin Foster. "A Simple Sensorless Position Error Correction Method for Dual Three-Phase Permanent Magnet Synchronous Machines", IEEE Transactions on Energy Conversion (2020). [DOI:10.1109/IEMDC47953.2021.9449591]
3. [3] Li, Yanxin, Zi-Qiang Zhu, Ximeng Wu, Arwyn Sean Thomas, and Zhanyuan Wu. "Comparative study of modular dual 3-phase permanent magnet machines with overlapping/non-overlapping windings", IEEE Transactions on Industry Applications 55, no. 4 (2019): 3566-3576. [DOI:10.1109/TIA.2019.2908138]
4. [4] K. Wang, Z. Q. Zhu, Y. Ren, and Grzegorz Ombach. "Torque improvement of dual three-phase permanent-magnet machine with third-harmonic current injection", IEEE transactions on industrial electronics 62, no. 11 (2015): 6833-6844. [DOI:10.1109/TIE.2015.2442519]
5. [5] Li, Yanxin, Z. Q. Zhu, and Arwyn Thomas. "Generic Slot and Pole Number Combinations for Novel Modular Permanent Magnet Dual 3-Phase Machines With Redundant Teeth", IEEE Transactions on Energy Conversion 35, no. 3 (2020): 1676-1687. [DOI:10.1109/TEC.2020.2988086]
6. [6] Liu, Tianyi, Z. Q. Zhu, Zhan-Yuan Wu, David Stone, and Martin Foster. "A Simple Sensorless Position Error Correction Method for Dual Three-Phase Permanent Magnet Synchronous Machines", IEEE Transactions on Energy Conversion (2020). [DOI:10.1109/IEMDC47953.2021.9449591]
7. [7] M. Barcaro, N. Bianchi, F. Magnussen, Analysis and tests of a dual three-phase 12-slot 10-pole permanent magnet motor[C]. proceedings of the Energy Conversion Congress and Exposition, 2009 ECCE 2009 IEEE, F 20-24 Sept. 2009, 2009 [DOI:10.1109/ECCE.2009.5316094]
8. [8] Y. Demir, and M. Aydin. "Design, analysis and validation of a dual three-phase 72-slot, 12-pole permanent magnet synchronous motor", In 2016 XXII International Conference on Electrical Machines (ICEM), pp. 1598-1603. IEEE, 2016. [DOI:10.1109/ICELMACH.2016.7732737]
9. [9] Dahaman Ishak, Z. Q. Zhu, David Howe. Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound[C]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21(1): 95-103 [DOI:10.1109/TEC.2005.853765]
10. [10] Chowdhury, Mazharul, Anant Singh, Raja Ramakrishnan, Mohammad Islam, and Abraham Gebregergis. "Performance analysis of dual wound permanent magnet synchronous machines under winding fault scenarios", In 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 693-700. IEEE, 2018. [DOI:10.1109/ECCE.2018.8558027] [PMID]
11. [11] Yuhua. Sun, Zhao. Wenxiang, Ji. Jinghua, Junqiang Zheng, and Yu Cheng. "Torque Improvement in Dual M-Phase Permanent-Magnet Machines by Phase Shift for Electric Ship Applications", IEEE Transactions on Vehicular Technology 69, no. 9 (2020): 9601-9612. [DOI:10.1109/TVT.2020.3004161]
12. [12] Jin. Xu, Odavic. Milijana, and Zhu. Ziqiang, "An Advanced Harmonic Compensation Strategy for Dual Three-Phase Permanent Magnet Synchronous Machines Considering Different Angle Displacements", In 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1797-1803. IEEE.
13. [13] Guodong. Feng, Lai. Chunyan, Li. Wenlong, Tjong. Jimi, and C. Kar. Narayan, "Open-phase fault modeling and optimized fault-tolerant control of dual three-phase permanent magnet synchronous machines", IEEE Transactions on Power Electronics 34, no. 11 (2019): 11116-11127. [DOI:10.1109/TPEL.2019.2900599]
14. [14] Tae Heoung. Kim, "The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements", Journal of IKEEE 24, no. 2 (2020): 441-445.
15. [15] Peilin. Xu, et al. "Analysis of dual three-phase permanent-magnet synchronous machines with different angle displacements", IEEE Transactions on Industrial Electronics 65.3 (2017): 1941-1954. [DOI:10.1109/TIE.2017.2748035]
16. [16] Subhra. Paul, Mitra. Rakesh, Piña Ortega. Alejandro, Pramod. Prerit, and Islam. Rakib, "Drive response modeling of dual wound surface permanent magnet machines", In 2017 IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1-8. IEEE, 2017. [DOI:10.1109/IEMDC.2017.8002394]
17. [17] حریری، علی محمد. دامکی علی‌آباد، علی‫اکبر. "طراحی جامع و ساخت موتور سنکرون آهن‌ربای دائم با هدف دستیابی به کمترین گشتاور دندانه"، مجله مهندسی برق و الکترونیک ایران. ۱۳۹۷; ۱۵ (۱) :۱۱۳-۱۲۱‬‬‬‬‬‬‬‬‬‬‬‬‬‬
18. [18] Yanqi. Wei, Si. Jikai, Cheng. Zhiping, Xu. Shuai, Dong. Lianghui, and Liang. Jing, "Design and characteristic analysis of a six-phase direct-drive permanent magnet synchronous motor with 60 phase-belt toroidal winding configuration for electric vehicle", IET Electric Power Applications 14, no. 13 (2020): 2659-2666. [DOI:10.1049/iet-epa.2020.0083]
19. [19] مویدي راد، حجت. شمسی نژاد، محمدعلی و فرشـاد. محسـن. "بهبـود عملکرد درایو کنترل سرعت موتور القـایی در محـدودهي سـرعتهـاي پایین و بالا با جبرانساز شار روتور"، نشریه مهندسی برق و الکترونیک ایران، صفحه 64-59 ،سال 9 ،شماره 2 ،پائیز و زمستان 1391.
20. [20] Yashan. Hu, Feng. Yaojing, and Li. Xuefei, "Fault-tolerant Hybrid Current Control of Dual Three-phase PMSM with One Phase Open", IEEE Journal of Emerging and Selected Topics in Power Electronics (2020).

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb