Volume 21, Issue 4 (JIAEEE Vol.21 No.4 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(4): 23-38 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golzari-kolur H, Bathaee S M, Amraee T. Generation Rescheduling to Ensure Small-Signal Stability in The Presence of Renewable Energy Sources. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :23-38
URL: http://jiaeee.com/article-1-1706-en.html
K.N. Toosi University of Technology
Abstract:   (1111 Views)
With the increasing penetration of renewable energy sources (RES) in power systems, small-signal stability (SSS) is challenged due to the decreasing inertia. This paper proposes a sequential generation rescheduling model considering a generic dynamic model for RES, formulated as an optimal power flow (OPF) with SSS constraints (SSS-OPF) to improve the system damping ratio. The dynamic modeling of wind turbine generators, photovoltaic sources, and energy storage systems is possible using this general dynamic model. The sensitivity of eigenvalues with respect to active and reactive powers of generating units has been used to describe the SSS constraints. By employing the semi-definite programming (SDP) relaxation technique, the SSS-OPF model is converted to a convex optimization model. This leads to enhanced convergence reliability and improved computational efficiency in solving the model, rendering the proposed method suitable and applicable for large-scale power systems. This optimization model can be solved using the SDPT3 solver in MATLAB software. Case studies on the IEEE 9-bus and IEEE 39-bus systems are conducted to validate the proposed algorithm. The proposed generation re-scheduling method increases the damping ratio of the power system with a high penetration of RES.
Full-Text [PDF 1447 kb]   (276 Downloads)    
Type of Article: Research | Subject: Power
Received: 2024/03/11 | Accepted: 2024/06/1 | Published: 2025/01/11

References
1. [1] Kundur, Prabha S., and Om P. Malik. 2022. Power System Stability and Control. 2nd ed. New York: McGraw Hill.
2. [2] Meegahapola, L. G., Bu, S., Wadduwage, D. P., Chung, C. Y., & Yu, X. (2020). Review on oscillatory stability in power grids with renewable energy sources: Monitoring, analysis, and control using synchrophasor technology. IEEE Transactions on Industrial Electronics, 68(1), 519-531. [DOI:10.1109/TIE.2020.2965455]
3. [3] Kim, Jongju, Sungshin Kim, and June Ho Park. "A Novel control strategy to improve stability and performance of a synchronous generator using jacobian gain control." IEEE Transactions on Power Systems 38, no. 1 (2022): 302-315. [DOI:10.1109/TPWRS.2022.3167706]
4. [4] Afaq, Umer, Farhan Ali, Ammar Hasan, Iftikhar Ahmad Rana, and Mansoor Asif. "Non-linear Synergetic Control of UPFC for Efficient Damping of Local and Inter-Area Oscillations." IEEE Transactions on Power Systems (2023). [DOI:10.1109/TPWRS.2023.3263891]
5. [5] Chung, C. Y., Wang, L., Howell, F., & Kundur, P. (2004). Generation rescheduling methods to improve power transfer capability constrained by small-signal stability. IEEE Transactions on Power Systems, 19(1), 524-530. [DOI:10.1109/TPWRS.2003.820700]
6. [6] Li, C., Chiang, H. D., & Du, Z. (2017). Network-preserving sensitivity-based generation rescheduling for suppressing power system oscillations. IEEE Transactions on Power Systems, 32(5), 3824-3832. [DOI:10.1109/TPWRS.2017.2649618]
7. [7] Li, Peijie, Hua Wei, Bin Li, and Yude Yang. "Eigenvalue‐optimisation‐based optimal power flow with small‐signal stability constraints." IET Generation, Transmission & Distribution 7, no. 5 (2013): 440-450. [DOI:10.1049/iet-gtd.2012.0171]
8. [8] Huang, Zhenyu, Ning Zhou, Francis Tuffner, Yousu Chen, Daniel Trudnowski, William Mittelstadt, John Hauer, and Jeffery Dagle. "Improving small signal stability through operating point adjustment." In IEEE PES General Meeting, pp. 1-8. IEEE, 2010. [DOI:10.1109/PES.2010.5589519]
9. [9] Condren, J., & Gedra, T. W. (2006). Expected-security-cost optimal power flow with small-signal stability constraints. IEEE Transactions on Power Systems, 21(4), 1736-1743. [DOI:10.1109/TPWRS.2006.882453]
10. [10] R. Zarate-Minano, F. Milano, and A. Conejo, "An OPF methodology to ensure small-signal stability," IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1050-1061, Aug. 2011. [DOI:10.1109/TPWRS.2010.2076838]
11. [11] P. Li, H. Wei, B. Li, and Y. Yang, "Eigenvalue-optimisation-based optimal power flow with small-signal stability constraints," IET Generation, Transmission & Distribution, vol. 7, no. 5, pp. 440-450, 2013. [DOI:10.1049/iet-gtd.2012.0171]
12. [12] M. M. Othman and S. Busan, "A novel approach of rescheduling the critical generators for a new available transfer capability determination," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 3-17, 2016. [DOI:10.1109/TPWRS.2015.2398118]
13. [13] Li, C., Chiang, H. D., & Du, Z. (2017). Network-preserving sensitivity-based generation rescheduling for suppressing power system oscillations. IEEE Transactions on Power Systems, 32(5), 3824-3832. [DOI:10.1109/TPWRS.2017.2649618]
14. [14] Parreiras, T. J. M. A., Gomes Jr, S., Taranto, G. N., & Uhlen, K. (2018). Closest security boundary for improving oscillation damping through generation redispatch using eigenvalue sensitivities. Electric Power Systems Research, 160, 119-127. [DOI:10.1016/j.epsr.2018.02.010]
15. [15] Thams, F., Halilbasic, L., Pinson, P., Chatzivasileiadis, S., & Eriksson, R. (2017, August). Data-driven security-constrained OPF. In Proc. 10th Bulk Power Syst. Dyn. Control Symp (Vol. 1, pp. 1-10). [DOI:10.23919/PSCC.2018.8442786]
16. [16] Pareek, P., & Nguyen, H. D. (2021). A convexification approach for small-signal stability constrained optimal power flow. IEEE Transactions on Control of Network Systems, 8(4), 1930-1941. [DOI:10.1109/TCNS.2021.3090205]
17. [17] Singh, M. K., & Kekatos, V. (2022). Optimal power flow schedules with reduced low-frequency oscillations. Electric Power Systems Research, 212, 108301. [DOI:10.1016/j.epsr.2022.108301]
18. [18] Li, P., Qi, J., Wang, J., Wei, H., Bai, X., & Qiu, F. (2016). An SQP method combined with gradient sampling for small-signal stability constrained OPF. IEEE Transactions on Power Systems, 32(3), 2372-2381. [DOI:10.1109/TPWRS.2016.2598266]
19. [19] Li, Y., Geng, G., Jiang, Q., Li, W., & Shi, X. (2019). A sequential approach for small signal stability enhancement with optimizing generation cost. IEEE Transactions on Power Systems, 34(6), 4828-4836. [DOI:10.1109/TPWRS.2019.2918171]
20. [20] Golzari-Kolur, H., Bathaee, S. M. T., & Amraee, T. (2023). A Sequential Generation Redispatch Algorithm to Ensure Power System Small Signal Stability under Low-Frequency Oscillations. International Transactions on Electrical Energy Systems, 2023. [DOI:10.1155/2023/2990504]
21. [21] Murzakhanov, I., Venzke, A., Misyris, G. S., & Chatzivasileiadis, S. (2020). Neural networks for encoding dynamic security-constrained optimal power flow. arXiv preprint arXiv:2003.07939.
22. [22] Wang, L., Yang, D., Cai, G., Gao, H., & Chen, Z. (2023). Synchronized-ambient-data-driven participation-factor-based generation rescheduling strategy for enhancing the damping level of interconnected power systems. International Journal of Electrical Power & Energy Systems, 146, 108740. [DOI:10.1016/j.ijepes.2022.108740]
23. [23] Pullaguram, D., Madani, R., Altun, T., & Davoudi, A. (2021). Small-signal stability-constrained optimal power flow for inverter dominant autonomous microgrids. IEEE Transactions on Industrial Electronics, 69(7), 7318-7328. [DOI:10.1109/TIE.2021.3102454]
24. [24] Yang, Z., Lin, S., Yang, Y., Chen, S., & Liu, M. (2023). Small-signal stability constrained optimal power flow of power system with DFIGs considering wind power uncertainty. International Journal of Electrical Power & Energy Systems, 154, 109467. [DOI:10.1016/j.ijepes.2023.109467]
25. [25] WECC Second Generation Wind Turbine Models, January 23, 2014 https://www.wecc.biz/Reliability/WECC-Second-Generation-Wind-Turbine-Models- 012314.pdf
26. [26] Farantatos, E. "Model user guide for generic renewable energy system models." Technical Update 3002027129 (2023).
27. [27] P. W. Sauer and M. Pai, Power system dynamics and stability, 1st ed. Urbana-Champaign: Prentice Hall, 1998.
28. [28] P. S. Kundur and O. P. Malik, Power System Stability and Control, McGraw-Hill Education, New York, NY, USA, 2022.
29. [29] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems, 26(1):12-19, Feb 2011. [DOI:10.1109/TPWRS.2010.2051168]
30. [30] Chowdhury, M. M. U. T., Kamalasadan, S., & Paudyal, S. (2023). A Second-Order Cone Programming (SOCP) Based Optimal Power Flow (OPF) Model with Cyclic Constraints for Power Transmission Systems. IEEE Transactions on Power Systems. [DOI:10.1109/TSG.2023.3241216]
31. [31] Xiaoqing Bai, Hua Wei, Katsuki Fujisawa, and Yong Wang. Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems, 30(6):383-392, 2008. [DOI:10.1016/j.ijepes.2007.12.003]
32. [32] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming, version 2.0 beta. https://cvxr.com/cvx, September 2013.
33. [33] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex programs, Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, editors, pages 95-110, Lecture Notes in Control and Information Sciences, Springer, 2008. http://stanford.edu/~boyd/graph_dcp.html. [DOI:10.1007/978-1-84800-155-8_7]
34. [34] P. M. Anderson and A. A. Fouad, Power System Control and Stability, 2nd ed. New York: IEEE Press, 2008.
35. [35] Jabr, R. A., & Pal, B. C. (2009). Intermittent wind generation in optimal power flow dispatching. IET Generation, Transmission & Distribution, 3(1), 66-74. [DOI:10.1049/iet-gtd:20080273]
36. [36] Souza, R. R., Balbo, A. R., Martins, A. C., Soler, E. M., Baptista, E. C., Sousa, D. N., & Nepomuceno, L. (2022). A gradient-based approach for solving the stochastic optimal power flow problem with wind power generation. Electric Power Systems Research, 209, 108038. [DOI:10.1016/j.epsr.2022.108090]
37. [37] M. A. Pai, Energy Function Analysis for Power System Stability. Boston, MA: Kluwer Academic Publishers, 1989. [DOI:10.1007/978-1-4613-1635-0]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb