دوره 22، شماره 1 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 1 1404 )                   جلد 22 شماره 1 صفحات 26-19 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barpour M, Rajabpour Moghadam K, Mohamadi Khalilabad P. Fully Integrated Fractional-N Frequency Synthesizer in 180-nm CMOS Technology for ISM-Band frequency. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :19-26
URL: http://jiaeee.com/article-1-1619-fa.html
برپور محمدرضا، رجب پور مقدم خسرو، محمدی خلیل آباد پیمان. سنتزکننده فرکانسی نوع کسری تمام مجتمع شده در تکنولوژی 180 نانومتر CMOS برای باند فرکانسی ISM. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (1) :19-26

URL: http://jiaeee.com/article-1-1619-fa.html


دانشکده مهندسی برق- واحد بجنورد، دانشگاه آزاد اسلامی
چکیده:   (183 مشاهده)
در این مقاله یک سنتزکننده فرکانسی نوع کسری کاملاً مجتمع شده برای پوشش باند فرکانسی ISM طراحی و شبیهسازی شده است. در این مقاله یک تکنیک خطیساز برای مدار شارژ پمپ ارائه شده است که منجر به بهبود خطینگی مدار شارژ پمپ و در نتیجه کل سنتزکننده شده است. سنتزکننده پیشنهادی در تکنولوژی 180 نانومتر CMOS با استفاده از ابزار کیدنس شبیه­سازی شده است. نتایج شبیهسازی شده از تکنیک ارائه شده در مدار شارژ پمپ نشان می­دهد که خطینگی جریان­های مدار شارژ پمپ حدود 44% بهبود یافته است و در بازه­ی ولتاژ کنترلی 0.2-1.6 V ، حداکثر ناانطباقی جریانها برابر با 0.4 µA می­باشد. بهبود خطینگی جریان­های مدار، باعث کاهش 25 dBc/Hz نویز فاز داخل باند حلقه قفل فاز شده و حساسیت گیرنده را نیز افزایش می­دهد. نتایج شبیهسازی شده کل حلقه سنتزکننده نشان می­دهد که زمان قفل حلقه برابر با  2 µS، نویز فاز سنتزکننده برای آفست­های فرکانسی 1 KHz، 10 KHz، 100 KHz و 1 MHz به ترتیب برابر -63 dBc/Hz ، -90 dBc/Hz، -95 dBc/Hz و -107 dBc/Hz است و بیشینه توان تن­های کسری 53 dBc پایین­تر از سیگنال حامل است. توان مصرفی سنتزکننده ارائه شده از یک منبع تغذیه 1.8 V برابر 1 mW است.
متن کامل [PDF 757 kb]   (70 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: الکترونیک
دریافت: 1402/5/10 | پذیرش: 1403/3/12 | انتشار: 1404/3/8

فهرست منابع
1. [1] T. H. Lee, H. Samavati, and H. R. Rategh, 5-GHz CMOS wirelessLANs, IEEE Trans. Microw. Theory Technol. 50 (1) (2002) 268-280. (doi: 10.1109/22.981280) [DOI:10.1109/22.981280]
2. [2] A.D. Berny, A.M. Niknejad, and R.G. Meyer, A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration, IEEE J. Solid-State Circuits 40 (4) (2005) 909-917. (doi: 10.1109/JSSC.2004.842851) [DOI:10.1109/JSSC.2004.842851]
3. [3] He, Ming, et al, 20.5 A 40nm dual-band 3-stream 802.11 a/b/g/n/ac MIMO WLAN SoC with 1.1 Gb/s over-the-air throughput, Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 350-351. (doi: 10.1109/ISSCC.2014.6757465) [DOI:10.1109/ISSCC.2014.6757465]
4. [4] Liu, Xiaolong, et al, A 3.45-4.22 GHz PLL frequency synthesizer with constant loop bandwidth for WLAN applications, International Midwest Symposium Circuits and Systems (MWSCAS), 2014, pp. 1728-1731. (doi: 10.1109/MWSCAS.2014.6908523) [DOI:10.1109/MWSCAS.2014.6908523]
5. [5] Huang, Deping, et al, A frequency synthesizer with optimally coupled QVCO and harmonic-rejection SSBmixer for multi-standard wireless receiver, IEEE J. Solid-State Circuits 46 (6) (2011) 1307-1320. (doi: 10.1109/JSSC.2011.2124970) [DOI:10.1109/JSSC.2011.2124970]
6. [6] Huang, Fuqing, et al. "A 1.78-3.05 GHz fractional-N frequency synthesizer with power reduced multi-modulus divider", ANALOG INTEGR CIRC S, 72 (1) (2012) 97-109. (doi: https://doi.org/10.1007/s10470-012-9842-7 [DOI:10.1007/s10470-012-9842-7)]
7. [7] Chen, Yating, Yan Han, and Sihui Wang. "A high swing charge pump with current mismatch reduction for PLL applications", IEICE Electronics Express (2021): 18-20200434. (doi: 10.1587/elex.18.20200434) [DOI:10.1587/elex.18.20200434]
8. [8] Mazzanti, Andrea, and Pietro Andreani, Class-C harmonic MOS VCOs, with a general result on phase noise, IEEE J. Solid-State Circuits 43 (12) (2008) 2716-2729. (doi: 10.1109/JSSC.2008.2004867) [DOI:10.1109/JSSC.2008.2004867]
9. [9] Osmany, S. A., et al, Integrated 22 GHz low-phase-noise VCO with digital tuning in SiGe BiCMOS technology, IEE Electron. Lett. 45 (1) (2009) 39-40. (doi: 10.1049/el:20092924) [DOI:10.1049/el:20092924]
10. [10] Vaucher, Cicero S., et al. A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology, IEEE J. Solid-State Circuits 35 (7) (2000) 1039-1045. (doi: 10.1109/4.848214) [DOI:10.1109/4.848214]
11. [11] Yu, Xiao Peng, et al. Design and optimization of the extended true single-phase clock-based prescaler, IEEE Trans. Microw. Theory Technol. 54 (11) (2006) 3828-3835. (doi:10.1109/TMTT.2006.884629) [DOI:10.1109/TMTT.2006.884629]
12. [12] Lee, Won-Hyo, Jun-Dong Cho, and Sung-Dae Lee. "A high speed and low power phase-frequency detector and charge-pump", Design Automation Conference, 1999. Proceedings of the ASP-DAC'99. Asia and South Pacific. IEEE, 1999. (doi: DOI:10.1109/ASPDAC.1999.760011) [DOI:10.1109/ASPDAC.1999.760011]
13. [13] Herzel, Frank, et al. "An integrated 8-12 GHz fractional-N frequency synthesizer in SiGe BiCMOS for satellite communications", Analog Integrated Circuits and Signal Processing 65.1 (2010): 21-32. (doi: 10.1007/s10470-010-9454-z) [DOI:10.1007/s10470-010-9454-z]
14. [14] Hati, Manas Kumar, and Tarun Kanti Bhattacharyya. "A fast automatic frequency and amplitude control LC-VCO circuit with noise filtering technique for a fractional-N PLL frequency synthesizer", Microelectronics Journal 52 (2016): 134-146. (doi: 10.1016/j.mejo.2016.03.014) [DOI:10.1016/j.mejo.2016.03.014]
15. [15] Lin, Tsung-Hsien, and Yu-Jen Lai. "An agile VCO frequency calibration technique for a 10-GHz CMOS PLL", IEEE Journal of solid-state circuits 42.2 (2017): 340-349. (doi: 10.1109/JSSC.2006.889360) [DOI:10.1109/JSSC.2006.889360]
16. [16] Zou, Wei, Daming Ren, and Xuecheng Zou. "A wideband low-jitter PLL with an optimized Ring-VCO", IEICE Electronics Express 17.3 (2020): 20190703-20190703. (doi:10.1587/elex.17.20190703) [DOI:10.1587/elex.17.20190703]
17. [17] Chen, Liang, et al. "A PLL Synthesizer for 5G mmW Transceiver", 2020 IEEE MTT-S International Wireless Symposium (IWS). IEEE, 2020. (doi: 10.1109/IWS49314.2020.9360123) [DOI:10.1109/IWS49314.2020.9360123]
18. [18] Azadbakht, Mostafa, Ali Sahafi, and Esmaeil Najafi Aghdam. "A dual band fractional-N frequency synthesizer with a self-calibrated charge pump for WLAN standards", Journal of Circuits, Systems and Computers 27.08 (2018): 1850131. [DOI:10.1142/S0218126618501311]
19. [19] آقای مصطفی عابدی ، دکتر جواد یاوند حسنی، "طراحی PLL دو حلقه‫ای مبتنی بر آشکارسازی فاز پنجرهای با سرعت قفل بالا، توان مصرفی و اسپور مرجع پایین"، مجله مهندسی برق و الکترونیک ایران، سال چهاردهم، شماره .1396 ،2.
20. [20] غلامی، محمد. رحیم‫پور، حمید. قاسمی، جمال. اسمعیلی، ایمان. پایین افراکتی، پایین. "طراحی حلقه قفل شده تاخیر برای گیرنده های بی‫سیم جهت بکارگیری در کاربردهای فرکانس بالا"، مجله مهندسی برق و الکترونیک ایران، سال سیزدهم، شماره .1395 ،4 .
21. [21] رحیم‫پور، حمید. غلامی، محمد. میار نعیمی، حسین. اردشیر، غلامرضا. "طراحی ضربکننده فرکانسی بر اساس حلقه قفل فاز شده تاخیر دیجیتالی و با سرعت بالا"، مجله مهندسی برق و الکترونیک ایران، سال دوازدهم، شماره .

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb