دوره 22، شماره 1 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 1 1404 )                   جلد 22 شماره 1 صفحات 77-65 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bazli M, Es'haghi S, Shahi M, Naseh M. Simultaneous analysis of the stochastic transistor aging and process variation in digital systems by developing machine learning-based models for standard cells. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (1) :65-77
URL: http://jiaeee.com/article-1-1601-fa.html
بذلی محمد، اسحقی سیاوش، شاهی محمود، ناصح مجید. تحلیل همزمان پیری تصادفی ترانزیستورها و نوسان فرآیند در سیستمهای دیجیتال با توسعه مدل یادگیری ماشین برای سلولهای استاندارد. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (1) :65-77

URL: http://jiaeee.com/article-1-1601-fa.html


دانشکده مهندسی- واحد بیرجند - دانشگاه آزاد اسلامی
چکیده:   (799 مشاهده)

امروزه قابلیت اعتماد یکی از چالش‌های اساسی در طراحی مدارات نانومتری است. پیری ترانزیستورها و نوسان فرایند دو عامل مهم مؤثر بر قابلیت اعتماد هستند. باگذشت زمان ترانزیستورها پیر می‌شوند به این معنی که مشخصات ترانزیستورها و به طور ویژه ولتاژ آستانه آنها تغییر می‌کند که سبب افزایش تأخیر می‌گردد. این افزایش تأخیر در نهایت باعث تخطی از محدودیت‌های زمانی و نادرست بودن عملکرد مدار می‌گردد. پدیده‌های گوناگونی سبب پیری ترانزیستورها می‌شوند که ناپایداری حرارتی بایاس (BTI) یکی از مهم‌ترین آنها است. این پدیده در تکنولوژی‌های ساخت پیشرفته امروزی ماهیتی تصادفی از خود نشان می‌دهد و برای توصیف آن مدل‌های اتمی ارائه شده است. نوسان فرایند به تغییرات تصادفی مشخصات ترانزیستور و مدار با مقادیر مورد انتظار گفته می­شود که به سبب غیر ایده­آل بودن فرایند ساخت و غالبا تحت تاثیر فرایند لیتوگرافی ایجاد می­شوند. تحلیل هم‌زمان این پدیده‌ها به بهبود طراحی کمک زیادی می‌کند. امروزه که نقطه شروع طراحی سیستم‌های دیجیتال به سطوح بالاتر انتزاع رفته است، به‌منظور جستجوی مؤثر فضای طراحی نیازمند مدل‌های سریع و دقیق برای ارزیابی قابلیت اعتماد مدارها هستیم. در این مقاله با توسعه مدل‌های مبتنی بر یادگیری ماشین برای تحلیل هم‌زمان پیری و نوسان فرایند سلول‌های استاندارد، یک روش تحلیل بر پایه مونت‌کارلو پیشنهاد شده است. نتایج آزمایش نشان‌دهنده بهبود زمان تحلیل با میانگین 49 درصد و 7/88 درصد نسبت به دو روش پیشرفته معرفی شده در مقالات است. این بهبود هم‌زمان با حفظ دقت تحلیل به‌دست‌آمده است. البته برای رسیدن به این بهبود زمان زیادی صرف آموزش مدل‌ها می‌شود که آن‌هم یک‌بار و به‌صورت آفلاین انجام می‌شود و تأثیری در زمان اجرا ندارد.

 
[i] Bias temperature instability
متن کامل [PDF 1081 kb]   (154 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: الکترونیک
دریافت: 1402/3/1 | پذیرش: 1403/6/20 | انتشار: 1404/3/8

فهرست منابع
1. [1] International Roadmap for Devices and Systems (IRDS™) 2022 Edition, 2022 https://irds.ieee.org/editions/2022.
2. [2] S. K. Kishore, T. R. Patnala, A. S. Tigadi, and A. Jamshed, "An On-chip Analysis of the VLSI designs under Process Variations", in 2020 International Conference on Smart Electronics and Communication (ICOSEC), 2020, pp. 1273-1277: IEEE [DOI:10.1109/ICOSEC49089.2020.9215244]
3. [3] E. Maricau, G. Gielen, E. Maricau, and G. Gielen, "Analog IC Reliability Simulation", Analog IC Reliability in Nanometer CMOS, pp. 93-149, 2013. [DOI:10.1007/978-1-4614-6163-0_5]
4. [4] T. Grasser, Bias temperature instability for devices and circuits. Springer Science & Business Media, 2013. [DOI:10.1007/978-1-4614-7909-3]
5. [5] J. F. Zhang, R. Gao, M. Duan, Z. Ji, W. Zhang, and J. Marsland, "Bias temperature instability of mosfets: Physical processes, models, and prediction", Electronics, vol. 11, no. 9, p. 1420, 2022. [DOI:10.3390/electronics11091420]
6. [6] B. Kaczer et al., "Atomistic approach to variability of bias-temperature instability in circuit simulations", in 2011 International Reliability Physics Symposium, 2011, pp. XT. 3.1-XT. 3.5: IEEE. [DOI:10.1109/IRPS.2011.5784604]
7. [7] S. Kiamehr et al., "The impact of process variation and stochastic aging in nanoscale VLSI", in 2016 IEEE International Reliability Physics Symposium (IRPS), 2016, pp. CR-1-1-CR-1-6: IEEE. [DOI:10.1109/IRPS.2016.7574590]
8. [8] S. Es' haghi and M. Eshghi, "Aging-aware scheduling and binding in high-level synthesis considering workload effects", Microelectronics Reliability, vol. 106, p. 113549, 2020. [DOI:10.1016/j.microrel.2019.113549]
9. [9] A. Sheikholeslami, "Process variation and pelgrom's law [Circuit intuitions]", IEEE Solid-State Circuits Magazine, vol. 7, no. 1, pp. 8-9, 2015. [DOI:10.1109/MSSC.2014.2369331]
10. [10] Y. Lu, L. Shang, H. Zhou, H. Zhu, F. Yang, and X. Zeng, "Statistical reliability analysis under process variation and aging effects", in Proceedings of the 46th Annual Design Automation Conference, 2009, pp. 514-519. [DOI:10.1145/1629911.1630044]
11. [11] S. Es' haghi and M. Eshghi, "Lifetime-aware scheduling in high level synthesis", Microelectronics Reliability, vol. 91, pp. 86-97, 2018. [DOI:10.1016/j.microrel.2018.06.016]
12. [12] S. Mahapatra and N. Parihar, "A review of NBTI mechanisms and models", Microelectronics Reliability, vol. 81, pp. 127-135, 2018. [DOI:10.1016/j.microrel.2017.12.027]
13. [13] Y. Xue et al., "On the understanding of pMOS NBTI degradation in advance nodes: Characterization, modeling, and exploration on the physical origin of defects", IEEE Transactions on Electron Devices, 2023. [DOI:10.1109/TED.2023.3294460]
14. [14] S. Mahapatra and N. Parihar, "Modeling of NBTI using BAT framework: DC-AC stress-recovery kinetics, material, and process dependence", IEEE Transactions on Device and Materials Reliability, vol. 20, no. 1, pp. 4-23, 2020. [DOI:10.1109/TDMR.2020.2967696]
15. [15] N. Ghobadi and A. Afzali-Kusha, "Investigation and Modeling of Negative Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI) Induced Degradation in Multi-Gate Nano-Devices", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 12, no. 2, pp. 1-14, 2015.
16. [16] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, "The impact of NBTI effect on combinational circuit: Modeling, simulation, and analysis", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 2, pp. 173-183, 2009. [DOI:10.1109/TVLSI.2008.2008810]
17. [17] M. Mohammadi, "A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 20, no. 1, pp. 107-118, 2023. [DOI:10.52547/jiaeee.20.1.107]
18. [18] Synopsys | EDA Tools, Semiconductor IP and Application Security solutions. https://www.synopsys.com/content/ dam/synopsys/verification/white-papers/mosra-wp.pdf
19. [19] D. Mahajan and V. Ruparelia, "Reliability Simulation and Analysis of Important RF Circuits Using Cadence Relxpert", in 2018 IEEE Int. Conf. Electronics, Comput. Communication Technol. (CONECCT), Bangalore, Mar. 16-17, 2018. IEEE, 2018. [DOI:10.1109/CONECCT.2018.8482396]
20. [20] M. Gholami, P. Valipour, and H. Alamdar, "One-bit Full Adder with Low Delay and Low Cell Count in the Emerging Technology of Quantum-Dot Cellular Automata", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 21, no. 1, pp. 11-16, 2024. [DOI:10.61186/jiaeee.21.1.11]
21. [21] R. Wang, Z. Zhang, Z. Sun, Z. Guo, Y. Lin, and R. Huang, "Cross-Layer Design for Reliability in Advanced Technology Nodes: An EDA Perspective", in 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 2022, pp. 1-4: IEEE. [DOI:10.1109/ICSICT55466.2022.9963318]
22. [22] D. Lorenz, "Aging analysis of digital integrated circuits", Universitätsbibliothek der TU München, 2012.
23. [23] L. C. Acharya et al., "Switching Activity Factor-Based ECSM Characterization (SAFE): A Novel Technique for Aging-Aware Static Timing Analysis", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024. [DOI:10.1109/TCAD.2024.3396432]
24. [24] L. Wu et al., "Glacier: A hot carrier gate level circuit characterization and simulation system for VLSI design", in Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525), 2000, pp. 73-79: IEEE.
25. [25] J. Chen, S. Wang, N. Bidokhti, and M. Tehranipoor, "A framework for fast and accurate critical-reliability paths identification", in IEEE North Atlantic test workshop (NATW), 2011, pp. 1-4.
26. [26] D. Lorenz, M. Barke, and U. Schlichtmann, "Efficiently analyzing the impact of aging effects on large integrated circuits", Microelectronics Reliability, vol. 52, no. 8, pp. 1546-1552, 2012. [DOI:10.1016/j.microrel.2011.12.029]
27. [27] X. Xhafa, A. D. Güngördü, D. Erol, Y. Yavuz, and M. B. Yelten, "An automated setup for the characterization of time-based degradation effects including the process variability in 40-nm CMOS transistors", IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10, 2021. [DOI:10.1109/TIM.2021.3090175]
28. [28] M. Raji and B. Ghavami, "Lifetime Reliability Optimization Algorithms of Integrated Circuits Using Dual-Threshold Voltage Assignment", in Lifetime Reliability-aware Design of Integrated Circuits: Springer, 2022, pp. 85-105. [DOI:10.1007/978-3-031-15345-7_6]
29. [29] V. V. Camargo, B. Kaczer, G. Wirth, T. Grasser, and G. Groeseneken, "Use of SSTA tools for evaluating BTI impact on combinational circuits", IEEE transactions on very large scale integration (VLSI) systems, vol. 22, no. 2, pp. 280-285, 2013. [DOI:10.1109/TVLSI.2013.2240323]
30. [30] P. R. Genssler, H. E. Barkam, K. Pandaram, M. Imani, and H. Amrouch, "Modeling and predicting transistor aging under workload dependency using machine learning", IEEE Transactions on Circuits and Systems I: Regular Papers, 2023. [DOI:10.1109/TCSI.2023.3289325]
31. [31] A. Bu and J. Li, "A learning-based framework for circuit path level NBTI degradation prediction", Electronics, vol. 9, no. 11, p. 1976, 2020. [DOI:10.3390/electronics9111976]
32. [32] L. Alrahis, J. Knechtel, F. Klemme, H. Amrouch, and O. Sinanoglu, "GNN4REL: Graph neural networks for predicting circuit reliability degradation", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 3826-3837, 2022. [DOI:10.1109/TCAD.2022.3197521]
33. [33] T. Mohamed, V. M. van Santen, L. Alrahis, O. Sinanoglu, and H. Amrouch, "Graph Attention Networks to Identify the Impact of Transistor Degradation on Circuit Reliability", IEEE Transactions on Circuits and Systems I: Regular Papers, 2024. [DOI:10.1109/TCSI.2024.3397460]
34. [34] P. J. Kumar and M. Mini, "Machine learning based workload balancing scheme for minimizing stress migration induced aging in multicore processors", International Journal of Information Technology, vol. 15, no. 1, pp. 399-410, 2023. [DOI:10.1007/s41870-022-01105-6]
35. [35] H. Xu et al., "Novel Critical Gate-Based Circuit Path-Level NBTI-Aware Aging Circuit Degradation Prediction", Journal of Circuits, Systems and Computers, vol. 32, no. 10, p. 2350175, 2023. [DOI:10.1142/S021812662350175X]
36. [36] K. Singh and S. Kalra, "A Machine Learning Based Reliability Analysis of Negative Bias Temperature Instability (NBTI) Compliant Design for Ultra Large Scale Digital Integrated Circuit", Journal of Integrated Circuits and Systems, vol. 18, no. 2, pp. 1-12, 2023. [DOI:10.29292/jics.v18i2.686]
37. [37] Z. Tang et al., "Semi-Supervised Transfer Learning Framework for Aging-Aware Library Characterization", IEEE Transactions on Circuits and Systems II: Express Briefs, 2023. [DOI:10.1109/TCSII.2023.3323384]
38. [38] M. T. H. Anik, H. I. Reefat, J.-L. Danger, S. Guilley, and N. Karimi, "Aging-Induced Failure Prognosis via Digital Sensors", UMBC Student Collection, 2023. [DOI:10.1145/3583781.3590204]
39. [39] L. Lu, J. Chen, M. Ulbricht, and M. Krstic, "Machine Learning Methodologies to Predict the Results of Simulation-Based Fault Injection", IEEE Transactions on Circuits and Systems I: Regular Papers, 2024. [DOI:10.1109/TCSI.2024.3349928]
40. [40] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis: Introduction to Chip and System Design. Springer Science & Business Media, 2012.
41. [41] Y.-G. Chen, C. Lin, and Y.-C. Wei, "A novel NBTI-aware chip remaining lifetime prediction framework using machine learning", in 2021 22nd International Symposium on Quality Electronic Design (ISQED), 2021, pp. 476-481: IEEE. [DOI:10.1109/ISQED51717.2021.9424356]
42. [42] J. Brown et al., "A Pragmatic Model to Predict Future Device Aging", IEEE Access, 2023. [DOI:10.1109/ACCESS.2023.3329077]
43. [43] S. Tan, M. Tahoori, T. Kim, S. Wang, Z. Sun, and S. Kiamehr, "Long-term reliability of nanometer VLSI systems", Cham: Springer, 2019. [DOI:10.1007/978-3-030-26172-6]
44. [44] J. Franco et al., "Impact of single charged gate oxide defects on the performance and scaling of nanoscaled FETs", in 2012 IEEE International Reliability Physics Symposium (IRPS), 2012, pp. 5A. 4.1-5A. 4.6: IEEE. [DOI:10.1109/IRPS.2012.6241841]
45. [45] H. Kukner et al., "NBTI aging on 32-bit adders in the downscaling planar FET technology nodes", in 2014 17th Euromicro Conference on Digital System Design, 2014, pp. 98-107: IEEE. [DOI:10.1109/DSD.2014.82]
46. [46] J. Hu, C. Yan, C. Guo, R. Jiang, D. Zhou, and X. Zeng, "A Fast Aging-aware Static Timing Analysis Prediction Frame of Digital Integrated Circuits", in 2021 IEEE 14th International Conference on ASIC (ASICON), 2021, pp. 1-4: IEEE. [DOI:10.1109/ASICON52560.2021.9620392]
47. [47] Z. Zhang et al., "Aging-aware gate-level modeling for circuit reliability analysis", IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4201-4207, 2021. [DOI:10.1109/TED.2021.3096171]
48. [48] S. Esshaghi, M. Bazli, and A. Esshaghi, "A Machine Learning-based Model for predicting Stochastic BTI Effects", Signal Processing and Renewable Energy, vol. 5, no. 4, pp. 67-81, 2021.
49. [49] https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/library-characterization/liberate-trio-characterization-suite.html.
50. [50] H. Qin and Y. Ye, "Algorithms of the Möbius function by random forests and neural networks", Journal of big data, vol. 11, no. 1, p. 31, 2024. [DOI:10.1186/s40537-024-00889-7]
51. [51] "Open-Cell Library", www.si2.org. https://si2.org/open-cell-library/
52. [52] "sklearn.ensemble.RandomForestRegressor", scikit-learn.http://scikit-learn.org/stable/modules/generated/ sklearn.ensemble.RandomForestRegressor.html
53. [53] "Design Compiler", Synopsys | EDA Tools, Semiconductor IP and Application Security Solutions. https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
54. [54] "ModelSim HDL simulator", Siemens Digital Industries Software https://eda.sw.siemens.com/en-US/ic/modelsim/.
55. [55] "Gold Standard in Static Timing Analysis - PrimeTime", Synopsys | EDA Tools, Semiconductor IP and Application Security Solutions. https://www.synopsys.com/ implementation-and-signoff/signoff/primetime.html.
56. [56] https://www.cbl.ncsu.edu/.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb