Volume 21, Issue 4 (JIAEEE Vol.21 No.4 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(4): 77-88 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Toodeji H, Jannati M. Feedback Linearization-Based Control Strategy with the Ability to Detect and Compensate False Data Injection Attack for Multi-Level DSTATCOM in Smart Grids. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :77-88
URL: http://jiaeee.com/article-1-1598-en.html
Yazd University
Abstract:   (1184 Views)
Modern voltage control strategies in the present distribution networks require efficient equipment as well as appropriate communication channels between these equipment, sensors and control centers, which has led to smart distribution networks with a complex cyber-physical nature. One of the efficient equipment for voltage control in modern distribution networks is the DSTATCOM, which uses using multilevel converters in its structure, provides many advantages, such as direct connection to the grid. A DSTATCOM with the multilevel converter requires a cyber-physical network between the controller and its components due to the presence of many controllable components, which makes it vulnerable to cyber-attacks, when connected to the present smart distribution networks. In this paper, a feedback linearization-based controller is developed for the cascaded multilevel DSTATCOM, and a discrete Kalman filter-based method is proposed to detect and compensate false data injection cyber-attacks on voltage sensors of the multilevel converter. The abilities of the proposed nonlinear controller to control the multilevel DSTATCOM as well as the reliable operation against false data injection attacks are verified through the simulation of a test power network in the MATLAB/Simulink environment.
Full-Text [PDF 1728 kb]   (281 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/05/14 | Accepted: 2024/01/6 | Published: 2025/01/11

References
1. [1] H. Sun et al., "Review of Challenges and Research Opportunities for Voltage Control in Smart Grids", IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2790-2801, Jul. 2019. [DOI:10.1109/TPWRS.2019.2897948]
2. [2] M., Shirkhani et al., "A Review on Microgrid Decentralized Energy/Voltage Control Structures and Methods", Energy Reports, vol. 10, pp. 368-380, Nov. 2023. [DOI:10.1016/j.egyr.2023.06.022]
3. [3] S. E., Razavi et al., "Impact of Distributed Generation on Protection and Voltage Regulation of Distribution Systems: A Review", Renewable and Sustainable Energy Reviews, vol.105, pp. 157-167, May 2019. [DOI:10.1016/j.rser.2019.01.050]
4. [4] M., Bajaj and A. K. Singh, "Grid integrated renewable DG systems: A Review of Power Quality Challenges and State‐of‐The‐Art Mitigation Techniques", International Journal of Energy Research, vol. 44, no. 1, pp. 26-69, Jan. 2020. [DOI:10.1002/er.4847]
5. [5] IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE Std 1547-2018, 2018, pp. 36-41.
6. [6] S. Chalise, H. R. Atia, B. Poudel and R. Tonkoski, "Impact of active power curtailment of Wind Turbines Connected to Residential Feeders for Overvoltage Prevention", IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 471-479, Apr. 2016. [DOI:10.1109/TSTE.2015.2499775]
7. [7] G. Fusco and M. Russo, "A Decentralized Approach for Voltage Control by Multiple Distributed Energy Resources", IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3115-3127, July 2021. [DOI:10.1109/TSG.2021.3057546]
8. [8] G. Fusco, M. Russo and M. De Santis, "Decentralized Voltage Control in Active Distribution Systems: Features and Open Issues", Energies, vol. 14, no. 9, pp. 2563, Apr. 2021. [DOI:10.3390/en14092563]
9. [9] Z. Li, Q. Guo, H. Sun, J. Wang, Y. Xu and M. Fan, "A Distributed Transmission-Distribution-Coupled Static Voltage Stability Assessment Method Considering Distributed Generation", IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2621-2632, May 2018. [DOI:10.1109/TPWRS.2017.2762473]
10. [10] S. Bolognani, R. Carli, G. Cavraro and S. Zampieri, "On the Need for Communication for Voltage Regulation of Power Distribution Grids", IEEE Transactions on Control of Network Systems, vol. 6, no. 3, pp. 1111-1123, Sept. 2019. [DOI:10.1109/TCNS.2019.2921268]
11. [11] L. Che, X. Liu, Z. Li and Y. Wen, "False Data Injection Attacks Induced Sequential Outages in Power Systems", IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 1513-1523, 2018. [DOI:10.1109/TPWRS.2018.2871345]
12. [12] A. J. Abianeh, Y. Wan, F. Ferdowsi, N. Mijatovic and T. Dragiˇcevi'c, "Vulnerability Identification and Remediation of FDI Attacks in Islanded DC Microgrids Using Multiagent Reinforcement Learning", IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6359-6370, 2021. [DOI:10.1109/TPEL.2021.3132028]
13. [13] M., Ghiasi, T., Niknam, Z., Wang, M., Mehrandezh, M., Dehghani and N. Ghadimi, "A Comprehensive Review of Cyber-Attacks and Defense Mechanisms for Improving Security in Smart Grid Energy Systems: Past, Present and Future", Electric Power Systems Research, vol. 215, 108975, Feb. 2023. [DOI:10.1016/j.epsr.2022.108975]
14. [14] J. C. Olivares-Rojas, E. Reyes-Archundia, J. A. Gutiérrez-Gnecchi, I. Molina-Moreno, J. Cerda-Jacobo and A. Méndez-Patiño, "Towards Cybersecurity of the Smart Grid Using Digital Twins", IEEE Internet Computing, vol. 26, no. 3, pp. 52-57, May-June 2022. [DOI:10.1109/MIC.2021.3063674]
15. [15] Y. Li and J. Yan, "Cybersecurity of Smart Inverters in the Smart Grid: A Survey", IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 2364-2383, Feb. 2023. [DOI:10.1109/TPEL.2022.3206239]
16. [16] V. Cobilean et al., "A Review of Visualization Methods for Cyber-Physical Security: Smart Grid Case Study," IEEE Access, vol. 11, pp. 59788-59803, June 2023. [DOI:10.1109/ACCESS.2023.3286304]
17. [17] A. Pinceti, L. Sankar and O. Kosut, "Detection and Localization of Load Redistribution Attacks on Large-Scale Systems", Journal of Modern Power Systems and Clean Energy, vol. 10, no. 2, pp. 361-370, 2021. [DOI:10.35833/MPCE.2020.000088]
18. [18] G. Liang, S. R. Weller, J. Zhao, F. Luo and Z. Y. Dong, "The 2015 Ukraine Blackout: Implications for False Data Injection Attacks", IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3317-3318, 2016. [DOI:10.1109/TPWRS.2016.2631891]
19. [19] کرامتی، مرجان. "ارائه مدلی برای بهبود روند امتیازدهی به آسیب‌پذیری در CVSS"، نشریه مهندسی برق و الکترونیک ایران، جلد 19، شماره 1، ص 35-41، ۱۴۰۱.
20. [20] A. S. L. V. Tummala and R. K. Inapakurthi, "A Two-stage Kalman Filter for Cyber-attack Detection in Automatic Generation Control System", Journal of Modern Power Systems and Clean Energy, vol. 10, no. 1, pp. 50-59, Jan. 2022. [DOI:10.35833/MPCE.2019.000119]
21. [21] H. Li, X. He, Y. Zhang and W. Guan, "Attack Detection in cyber-physical Systems Using Particle Filter: An Illustration on Three-Tank System", in 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control and Intelligent Systems (CYBER), 2018, pp. 504-509. [DOI:10.1109/CYBER.2018.8688281]
22. [22] M. R. Habibi, H. R. Baghaee, T. Dragiˇcevi'c and F. Blaabjerg, "Detection of False Data Injection Cyber-Attacks in DC Microgrids Based on Recurrent Neural networks", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5294-5310, 2020. [DOI:10.1109/JESTPE.2020.2968243]
23. [23] C. Burgos-Mellado et al., "Reinforcement Learning-Based Method to Exploit Vulnerabilities of False Data Injection Attack Detectors in Modular Multilevel Converters", IEEE Transactions on Power Electronics, vol. 38, no. 7, pp. 8907-8921, July 2023. [DOI:10.1109/TPEL.2023.3263728]
24. [24] A. Iqbal et al., "Stability Assessment and Performance Analysis of New Controller for Power Quality Conditioning in Microgrids", International Transactions on Electrical Energy Systems, vol. 31, no. 6, Jun. 2021, Art. no. e12891. [DOI:10.1002/2050-7038.12891]
25. [25] حسین‌پور، مجید. سیفی، علی. "یک ساختار جدید مبتنی بر سوییچ-دیود برای اینورتر چندسطحی با قابلیت تغذیه با یک منبع ولتاژ DC"، نشریه مهندسی برق و الکترونیک ایران، جلد 19، شماره 4، ص 57-69، ۱۴۰۱.
26. [26] S. Yang, Y. Tang and P. Wang, "Distributed Control for A Modular Multilevel Converter", IEEE Transactions on Power Electeronics, vol. 33, no. 7, pp. 5578-5591, 2017. [DOI:10.1109/TPEL.2017.2751254]
27. [27] C. Burgos-Mellado et al., "Cyber-Attacks in Modular Multilevel Converters", IEEE Transactions on Power Electronics, vol. 37, no. 7, pp. 8488-8501, July 2022. [DOI:10.1109/TPEL.2022.3147466]
28. [28] N. Deshmukh, S. Prabhakar and S. Anand, "Power Loss Reduction in Buck Converter Based Active Power Decoupling Circuit", IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4316-4325, April 2021. [DOI:10.1109/TPEL.2020.3024721]
29. [29] H. Toodeji, "A Hybrid Switching Technique for Single-Phase AC-Module PV System to Reduce Power Losses and Minimize THD", Iranian Journal of Electrical & Electronic Engineering, vol. 16, no.1, pp. 13-25, 2020.
30. [30] K. J. P., Veeramraju, J. A., Mueller and J. W. Kimball, "An Extended Generalized Average Modeling Framework for Power Converters", IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9581-9592, Aug. 2023. [DOI:10.1109/TPEL.2023.3276631]
31. [31] J. P. Hespanha, Linear Systems Theory. 2nd ed., Princeton University Press, 2018. [DOI:10.23943/9781400890088] [PMID] []
32. [32] H., Liu, F., Hu, J., Su, X., Wei and R. Qin, "Comparisons on Kalman-Filter-Based Dynamic State Estimation Algorithms of Power Systems", IEEE Access, vol. 8, pp. 51035-51043, 2020. [DOI:10.1109/ACCESS.2020.2979735]
33. [33] O. S. M. Abushafa, M. S. Dahidah, S. M. Gadoue and D. J. Atkinson, "Submodule Voltage Estimation Scheme in Modular Multilevel Converters with Reduced Voltage Sensors Based on Kalman Filter Approach", IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7025-7035, 2018. [DOI:10.1109/TIE.2018.2795519]
34. [34] C. Burgos, D. Saez, M. E. Orchard and R. C'ardenas, "Fuzzy Modelling for The State-of-Charge Estimation of Lead-Acid Batteries", Journal of Power Sources, vol. 274, pp. 355-366, 2015. [DOI:10.1016/j.jpowsour.2014.10.036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb