1. [1] J. Buberger, A. Kersten, M. Kuder, R. Eckerle, T. Weyh, and T. Thiringer, "Total CO2-equivalent life-cycle emissions from commercially available passenger cars", Renewable and Sustainable Energy Reviews, vol. 159, p. 112158, 2022. [
DOI:10.1016/j.rser.2022.112158]
2. [2] L. Gustavsson, T. Nguyen, R. Sathre, and U. Y. A. Tettey, "Climate effects of forestry and substitution of concrete buildings and fossil energy", Renewable and Sustainable Energy Reviews, vol. 136, p. 110435, 2021. [
DOI:10.1016/j.rser.2020.110435]
3. [3] S. Hemavathi and A. Shinisha, "A study on trends and developments in electric vehicle charging technologies", Journal of Energy Storage, vol. 52, p. 105013, 2022. [
DOI:10.1016/j.est.2022.105013]
4. [4] O. Sadeghian, A. Oshnoei, B. Mohammadi-Ivatloo, V. Vahidinasab, and A. Anvari-Moghaddam, "A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges", Journal of Energy Storage, vol. 54, p. 105241, 2022. [
DOI:10.1016/j.est.2022.105241]
5. [5] N. Ding, K. Prasad, and T. Lie, "The electric vehicle: a review", International Journal of Electric and Hybrid Vehicles, vol. 9, no. 1, pp. 49-66, 2017. [
DOI:10.1504/IJEHV.2017.082816]
6. [6] K. Koirala and M. Tamang, "Planning and establishment of battery swapping station-A support for faster electric vehicle adoption", Journal of Energy Storage, vol. 51, p. 104351, 2022. [
DOI:10.1016/j.est.2022.104351]
7. [7] M. Khalid, F. Ahmad, B. K. Panigrahi, and L. Al-Fagih, "A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery", Journal of Energy Storage, vol. 53, p. 105084, 2022. [
DOI:10.1016/j.est.2022.105084]
8. [8] X. Yang, C. Shao, C. Zhuge, M. Sun, P. Wang, and S. Wang, "Deploying battery swap stations for shared electric vehicles using trajectory data", Transportation Research Part D: Transport and Environment, vol. 97, p. 102943, 2021. [
DOI:10.1016/j.trd.2021.102943]
9. [9] S. R. Revankar and V. N. Kalkhambkar, "Grid integration of battery swapping station: A review", Journal of Energy Storage, vol. 41, p. 102937, 2021. [
DOI:10.1016/j.est.2021.102937]
10. [10] H. Farzin, "Reliability cost/worth assessment of emergency B2G services in two modes of battery swap technology", Sustainable Energy, Grids and Networks, vol. 31, p. 100787, 2022. [
DOI:10.1016/j.segan.2022.100787]
11. [11] W. Li, Y. Li, H. Deng, and L. Bao, "Planning of electric public transport system under battery swap mode", Sustainability, vol. 10, no. 7, p. 2528, 2018. [
DOI:10.3390/su10072528]
12. [12] C. Li, N. Wang, W. Li, Q. Yi, and D. Qi, "A battery centralized scheduling strategy for battery swapping of electric vehicles", Journal of Energy Storage, vol. 51, p. 104327, 2022. [
DOI:10.1016/j.est.2022.104327]
13. [13] S. Wang, L. Yu, L. Wu, Y. Dong, and H. Wang, "An improved differential evolution algorithm for optimal location of battery swapping stations considering multi-type electric vehicle scale evolution", IEEE Access, vol. 7, pp. 73020-73035, 2019. [
DOI:10.1109/ACCESS.2019.2919507]
14. [14] M. Zeng, Y. Pan, D. Zhang, Z. Lu, and Y. Li, "Data-driven location selection for battery swapping stations", IEEE Access, vol. 7, pp. 133760-133771, 2019. [
DOI:10.1109/ACCESS.2019.2941901]
15. [15] R. A. G. Rendón, R. A. H. Isaza, and F. A. O. Cruz, "Optimal location of battery swap stations for electric vehicles", Scientia et technica, vol. 24, no. 3, pp. 377-384, 2019. [
DOI:10.22517/23447214.21481]
16. [16] U. Sultana, A. B. Khairuddin, B. Sultana, N. Rasheed, S. H. Qazi, and N. R. Malik, "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm", Energy, vol. 165, pp. 408-421, 2018. [
DOI:10.1016/j.energy.2018.09.083]
17. [17] H. Wu, G. K. H. Pang, K. L. Choy, and H. Y. Lam, "An optimization model for electric vehicle battery charging at a battery swapping station", IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 881-895, 2017. [
DOI:10.1109/TVT.2017.2758404]
18. [18] L. Ni, B. Sun, X. Tan, and D. H. Tsang, "Inventory Planning and Real-time Routing for Network of Electric Vehicle Battery Swapping Stations", IEEE Transactions on Transportation Electrification, 2020. [
DOI:10.1109/TTE.2020.3015290]
19. [19] Y. Zheng, Z. Y. Dong, Y. Xu, K. Meng, J. H. Zhao, and J. Qiu, "Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning", IEEE transactions on Power Systems, vol. 29, no. 1, pp. 221-229, 2013. [
DOI:10.1109/TPWRS.2013.2278852]
20. [20] A. R. Jordehi, M. S. Javadi, and J. P. Catalão, "Optimal placement of battery swap stations in microgrids with micro pumped hydro storage systems, photovoltaic, wind and geothermal distributed generators", International Journal of Electrical Power & Energy Systems, vol. 125, p. 106483, 2021. [
DOI:10.1016/j.ijepes.2020.106483]
21. [21] M. Ban, D. Guo, J. Yu, and M. Shahidehpour, "Optimal sizing of PV and battery-based energy storage in an off-grid nanogrid supplying batteries to a battery swapping station", Journal of Modern Power Systems and Clean Energy, vol. 7, no. 2, pp. 309-320, 2019. [
DOI:10.1007/s40565-018-0428-y]
22. [22] J. Feng, S. Hou, L. Yu, N. Dimov, P. Zheng, and C. Wang, "Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging", Applied Energy, vol. 264, p. 114708, 2020. [
DOI:10.1016/j.apenergy.2020.114708]
23. [23] P. You et al., "Scheduling of EV battery swapping-Part I: Centralized solution", IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1887-1897, 2017. [
DOI:10.1109/TCNS.2017.2773025]
24. [24] H.-M. Chung, W.-T. Li, C. Yuen, C.-K. Wen, and N. Crespi, "Electric vehicle charge scheduling mechanism to maximize cost efficiency and user convenience", IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3020-3030, 2018. [
DOI:10.1109/TSG.2018.2817067]
25. [25] W. Tushar, C. Yuen, S. Huang, D. B. Smith, and H. V. Poor, "Cost minimization of charging stations with photovoltaics: An approach with EV classification", IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 1, pp. 156-169, 2015. [
DOI:10.1109/TITS.2015.2462824]
26. [26] X. Wang, C. Yuen, N. U. Hassan, N. An, and W. Wu, "Electric vehicle charging station placement for urban public bus systems", IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 1, pp. 128-139, 2016. [
DOI:10.1109/TITS.2016.2563166]
27. [27] M. H. Shaker, H. Farzin, and E. Mashhour, "Joint planning of electric vehicle battery swapping stations and distribution grid with centralized charging", Journal of Energy Storage, vol. 58, p. 106455, 2023. [
DOI:10.1016/j.est.2022.106455]
28. [28] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications", ieee transactions on sustainable energy, vol. 7, no. 4, pp. 1730-1738, 2016. [
DOI:10.1109/TSTE.2016.2558500]
29. [29] H. Farzin, M. Moeini-Aghtaie, and M. Fotuhi-Firuzabad, "Reliability studies of distribution systems integrated with electric vehicles under battery-exchange mode", IEEE Transactions on Power Delivery, vol. 31, no. 6, pp. 2473-2482, 2015. [
DOI:10.1109/TPWRD.2015.2497219]
30. [30] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids", IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 117-127, 2016. [
DOI:10.1109/TSG.2016.2598678]
31. [31] J. Savier and D. Das, "Impact of network reconfiguration on loss allocation of radial distribution systems", IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2473-2480, 2007. [
DOI:10.1109/TPWRD.2007.905370]
32. [32] رزمی، هادی. دعاگوی مجرد، حسن. نیکنام، طاهر. "بهرهبرداری بهینهی احتمالاتی از نیروگاههای ترکیبی تولید برق و حرارت، بادی و خورشیدی"، نشریه مهندسی برق و الکترونیک ایران. ۱۴۰۱; ۱۹ (۱) :۱۴۹-۱۶۰.
33. [33] ورشوساز، فرشید. معظمی، مجید. فانی، بهادر. "برنامهریزی و تخمین تصادفی ظرفیت یک ایستگاه شارژ خودروهای الکتریکی با سقف خورشیدی با استفاده از نظریه صف و جنگل تصادفی"، نشریه مهندسی برق و الکترونیک ایران. ۱۳۹۸; 16 (1) : 31-39.
34. [34] M. Bahrami, M. Vakilian, H. Farzin, and M. Lehtonen, "A CVaR-based stochastic framework for storm-resilient grid, including bus charging stations", Sustainable Energy, Grids and Networks, p. 101082, 2023. [
DOI:10.1016/j.segan.2023.101082]