1. [1] Q. Khan, SS. Refaat, H. Abu-Rub, et al, Partial discharge detection and diagnosis in gas insulated switchgear: state of the art, IEEE Electr. Insul. Mag, vol. 35, no. 5, pp. 16-33, 2019. [
DOI:10.1109/MEI.2019.8735667]
2. [2] Cigré Working Group A3.06. Final report of the 2004 - 2007 international enquiry on reliability of high voltage equipment - part 5 - gas insulated switchgear (GIS), Cigré Broch, vol. 513, 2012.
3. [3] Xavier GVR, Silva HS, Costa EG da, et al, Detection, Classification and Location of Sources of Partial Discharges Using the Radiometric Method: Trends, Challenges and Open Issues, IEEE Access 2021; vol 9; pp 110787-110810, 2021. [
DOI:10.1109/ACCESS.2021.3102888]
4. [4] جهانگیر، ح. اکبری، ا. ازیرانی، پ. ورله، "بررسی عملکرد پروبهای UHF در آشکارسازی تخلیه جزئی در ترانسفورماتورهای فشارقوی"، مجله انجمن مهندسی برق و الکترونیک ایران، سال پانزدهم، شماره سوم، صفحه 33-43، تهران، پاییز 1397.
5. [5] مذهب جعفری، ع. اکبری ازیرانی، ا. "مدلسازی سیم پیچ ترانسفورماتورهای قدرت با استفاده از مدل خط انتقال چندسیمه بمنظور مکانیابی تخلیه جزئی"، مجله انجمن مهندسی برق و الکترونیک ایران، سال ششم، شماره اول، صفحه 73-83، تهران، بهار و تابستان 1388.
6. [6] J. Q. Chan, W J. K. Raymond, H. A. Illias, et al., "Partial Discharge Localization Techniques: A Review of Recent Progress", Energies (Switzerland), vol. 16, no 6, pp. 1-31, 2023. [
DOI:10.3390/en16062863]
7. [7] J. Liu, M. Yao, C. Huang, et al, "Research of partial discharge localization method in GIS based on UHF technique", WSEAS Trans. Circuits Syst., vol. 8, no. 8, pp. 631-640, 2009.
8. [8] J. Jiang, K. Wang, C. Zhang, et al, "Improving the Error of Time Differences of Arrival on Partial Discharges Measurement in Gas-Insulated Switchgear", pp. 1-11, 2018. [
DOI:10.3390/s18114078] [
PMID] [
]
9. [9] X. Li, X. Wang, A. Yang, et al, "Partial Discharge Source Localization in GIS Based on Image Edge Detection and Support Vector Machine", IEEE Trans. Power Deliv., vol. PP, p. 1, Jun. 2019. [
DOI:10.1109/TPWRD.2019.2925034]
10. [10] H. Qiang, Q. Wang, H. Niu, et al, "A Partial Discharge Localization Method Based on the Improved Artificial Fish Swarms Algorithm", Energies, vol. 16, no. 6. 2023. [
DOI:10.3390/en16062928]
11. [11] C. Gao, L. Yu, Y. Xu, et al, Partial discharge localization inside transformer windings via fiber-optic acoustic sensor array, IEEE Transaction on Power Delivery, vol. 34, pp 1251-1260, 2019. [
DOI:10.1109/TPWRD.2018.2880230]
12. [12] S. Yoshida, H. Kojima, N. Hayakawa, et al, Light emission spectrum depending on propagation of partial discharge in SF6, In Conference Record of IEEE International Symposium on Electrical Insulation, pp. 365-368, 2008. [
DOI:10.1109/ELINSL.2008.4570350]
13. [13] M. Ren, B. Song, T. Zhuang, et al, Optical partial discharge diagnostic in SF 6 gas insulated system via multi-spectral detection, ISA Trans, vol. 75, pp. 247-257, 2018. [
DOI:10.1016/j.isatra.2018.02.008] [
PMID]
14. [14] MM. Yaacob, MA. Alsaedi, JR. Rashed, et al, Review on partial discharge detection techniques related to high voltage power equipment using different sensors, Photonic Sensors, vol. 4, pp. 325-337, 2014. [
DOI:10.1007/s13320-014-0146-7]
15. [15] H. Karami, M. Azadifar, A. Mostajabi, et al, Partial discharge localization using time reversal: application to power transformers, Sensors (Switzerland), vol. 20, pp. 1-15, 2020. [
DOI:10.3390/s20051419] [
PMID] [
]
16. [16] N. Stockhausen, C. Werner, J. Streicher, et al, Application of inverse filtering on lidar signals, In Proceedings SPIE, vol 3865, pp. 134-143, 1999. [
DOI:10.1117/12.373029]
17. [17] X. Yu, C. Zou, L. Yang, Improved recursive inverse filtering method for blind image restoration, In 6th International Conference on Signal Processing, 2002, vol 1, pp. 37-40, 2002.
18. [18] RP. Kumar, SC. Neela, SR. Murikinati, et al, Image restoration by inverse filtering, In 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), pp. 1227-1231, 2022. [
DOI:10.1109/ICCMC53470.2022.9754161]
19. [19] ĐT. Grozdić, ST. Jovičić, J. Galić, et al, Application of inverse filtering in enhancement of whisper recognition, In 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), pp. 157-162, 2014. [
DOI:10.1109/NEUREL.2014.7011492]
20. [20] E. Onajite, Chapter 7 - Understanding Deconvolution. In Seismic Data Analysis Techniques in Hydrocarbon Exploration, Elsevier, pp. 93-103, 2014. [
DOI:10.1016/B978-0-12-420023-4.00007-1]
21. [21] H. Karami, F. Askari, F. Rachidi, et al, An inverse-filter-based method to locate partial discharge sources in power transformers, Energies, vol. 15, p. 1988, 2022. [
DOI:10.3390/en15061988]
22. [22] Karami H, Azadifar M, Mostajabi A, et al. Localization of Electromagnetic Interference Sources Using a Time-Reversal Cavity, IEEE Trans. Ind. Electron. 2021; vol 68; pp 654-662, 2021. [
DOI:10.1109/TIE.2019.2962460]
23. [23] J. Zohrevand, H. Karami, M. Rubinstein, et al, Partial discharge localization using time reversal: application to gas insulated switchgear, Electric Power System Research, vol. 212, 2022. [
DOI:10.1016/j.epsr.2022.108655]
24. [24] M. Rubinstein, F. Rachidi, Electromagnetic time reversal and its application to electromagnetic compatibility, In 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, EMC, SI and PI, 2018. [
DOI:10.1109/EMCSI.2018.8495379]
25. [25] A. Ragusa, H. Sasse, A. Duffy, et al, Electromagnetic time reversal method to locate partial discharges in power networks using 1D TLM modelling, IEEE Letters on Electromagnetic Compatibility Practice and Applications, vol. 3, pp. 24-28, 2021. [
DOI:10.1109/LEMCPA.2020.3032465]
26. [26] P. Kosmas, CM. Rappaport, FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions, IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 2317-2323, 2005. [
DOI:10.1109/TMTT.2005.850444]
27. [27] Z. Wang, R. Razzaghi, M. Paolone, et al, Electromagnetic time reversal similarity characteristics and its application to locating faults in power networks, IEEE Transactions on Power Delivery, vol. 8, pp. 147507-147515, 2020.
28. [28] G. Montaldo, M. Tanter, Fink M, Real time inverse filter focusing through iterative time reversal, Journal of the Acoustical Society of America, vol. 115, pp. 768-775, 2004. [
DOI:10.1121/1.1636462] [
PMID]
29. [29] BE. Anderson, J. Douma, TJ. Ulrich, et al, Improving spatio-temporal focusing and source reconstruction through deconvolution, Wave Motion, vol. 52, pp. 151-159, 2015. [
DOI:10.1016/j.wavemoti.2014.10.001]
30. [30] ML. Willardson, BE. Anderson, SM. Young, et al, Time reversal focusing of high amplitude sound in a reverberation chamber, Journal of the Acoustical Society of America, vol. 143, pp. 696-705, 2018. [
DOI:10.1121/1.5023351] [
PMID]
31. [31] J. Douma, E. Niederleithinger, R. Snieder, Locating events using time reversal and deconvolution: experimental application and analysis, Journal of Nondestructive Evaluation, vol. 34, p. 2, 2015. [
DOI:10.1007/s10921-015-0276-x]