1. [1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications", IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142, Oct 2017. [
DOI:10.1109/JIOT.2017.2683200]
2. [2] P. Neelakanta, "Designing robust wireless communications for factory floors", in 2006 IEEE International Conference on Industrial Informatics, Aug. 2006. [
DOI:10.1109/INDIN.2006.275685]
3. [3] S. K. Timalsina, R. Bhusal, and S. Moh, "NFC and its application to mobile payment: Overview and comparison", in 2012 8th International Conference on Information Science and Digital Content Technology (ICIDT), pp. 203- 206.
4. [4] N. Wang, P. Wang, A. Alipour-Fanid, L. Jiao and K. Zeng, "Physical layer security of 5G wireless networks for IoT: Challenges and opportunities", IEEE Internet Things J., vol. 6, no. 5, pp. 8169-8181, Oct. 2019. [
DOI:10.1109/JIOT.2019.2927379]
5. [5] J. Zhang, G. Li, A. Marshall, A. Hu, and L. Hanzo, "A new frontier for IoT security emerging from three decades of key generation relying on wireless channels", IEEE Access, Aug. 2020. [
DOI:10.1109/ACCESS.2020.3012006]
6. [6] G. Li, C. Sun, J. Zhang, E. Jorswieck, B. Xiao, and A. Hu, "Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities", Entropy, vol. 21, p. 497, 2019. [
DOI:10.3390/e21050497] [
PMID] [
]
7. [7] O. A. Topal and G. Karabulut Kurt, "Physical layer authentication for LEO satellite constellations", in 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1952-1957. [
DOI:10.1109/WCNC51071.2022.9771727]
8. [8] K. Lin, Z. Ji, Y. Zhang, G. Chen, P. L. Yeoh and Z. He, "Secret key generation based on 3D spatial angles for UAV communications", in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1-6. [
DOI:10.1109/WCNC49053.2021.9417510]
9. [9] O. A. Topal, G. K. Kurt and H. Yanikomeroglu, "Securing the inter-spacecraft links: Physical layer key generation from doppler frequency shift", IEEE Journal of Radio Frequency Identification, vol. 5, no. 3, pp. 232-243, Sept. 2021. [
DOI:10.1109/JRFID.2021.3077756]
10. [10] A. K. Tirandaz and A. Kuhestani, "Security analysis of a mutual random phase injection scheme to generate a secret key in static point-to-point communications", Electronic and Cyber Defense, vol. 10, no. 2, pp. 19-30, Oct. 2022
11. [11] T. M. Pham, A. N. Barreto, M. Mitev, M. Matthé and G. Fettweis, "Secure communications in line-of-sight scenarios by rotation-based secret key generation", in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1101-1105. [
DOI:10.1109/ICCWorkshops53468.2022.9814519] [
PMID] [
]
12. [12] G. Li, H. Yang, J. Zhang, H. Liu and A. Hu, "Fast and secure key generation with channel obfuscation in slowly varying environments", in 2022 IEEE INFOCOM, IEEE Conference on Computer Communications, pp. 1-10. [
DOI:10.1109/INFOCOM48880.2022.9796694]
13. [13] S. Mohajer Hamidi, A. K. Khandani, and E. Bateni, "A secure key sharing algorithm exploiting phase reciprocity in wireless channels", arXiv:2111.15046v1, Nov. 2021. [
DOI:10.1109/SPAWC51304.2022.9833972]
14. [14] Y. Liu, S. C. Draper, and A. M. Sayeed, "Exploiting channel diversity in secret key generation from multipath fading randomness", IEEE Trans. Inf. Foren. Sec., vol. 7, no. 5, pp. 1484-1497, Oct. 2012. [
DOI:10.1109/TIFS.2012.2206385]
15. [15] X. Guan, N. Ding, Y. Cai and W. Yang, "Wireless key generation from imperfect channel state information: Performance analysis and improvements", in IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019, pp. 1-6. [
DOI:10.1109/ICCW.2019.8756656]
16. [16] A. Kuhestani, A. Mohammadi and K.-K. Wong, "Optimal power allocation by imperfect hardware analysis in untrusted relaying networks", IEEE Trans. Wireless Commun., vol. 17, pp. 4302-4314, July 2018. [
DOI:10.1109/TWC.2018.2822286]
17. [17] V. Shahiri, A. Kuhestani and L. Hanzo, "Short-packet amplify-and-forward relaying for the internet-of-things in the face of imperfect channel estimation and hardware impairments", IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 20-36, Mar. 2022. [
DOI:10.1109/TGCN.2021.3092067]
18. [18] دزفولیزاده، سمانه، مبینی، زهرا، "استراق سمع فعال با کمک UAV برای بهبود امنیت شبکه های مخابرات مشارکتی"، مجله مهندسی برق و الکترونیک ایران، جلد 18، شماره 3، 143-151، پاییز 1400.
19. [19] M. T. Mamaghani, A. Kuhestani, and H. Behroozi, "Can a multi-hop link relying on untrusted amplify-and-forward relays render security?", Wireless Netw., vol. 27, no. 1, pp. 795-807, Jan. 2021. [
DOI:10.1007/s11276-020-02487-w]
20. [20] H. Saedi, A. Mohammadi, and A. Kuhestani, "Characterization of untrusted relaying networks in the presence of an adversary jammer", Wireless Networks, Jun. 2019. [
DOI:10.1007/s11276-019-02049-9]
21. [21] M. Letafati, A. Kuhestani, D. W. K. Ng, and H. Behroozi, "A new frequency hopping-aided secure communication in the presence of an adversary jammer and an untrusted relay", IEEE Int. Conf. Commun. Workshop (ICCW), Ireland, Jun. 2020. [
DOI:10.1109/ICCWorkshops49005.2020.9145441]
22. [22] Z. Zhang, G. Li, and A. Hu, "An adaptive information reconciliation protocol for physical-layer based sewcret key generation", in 2019 IEEE 89th Veh. Technol. Conf. (VTC2019-Spring), 2019, pp. 1-5. [
DOI:10.1109/VTCSpring.2019.8746667]