XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Imani M, Ghassemian H. Weighted Feature Line Embedding for Feature Extraction of Hyperspectral Images . Journal of Iranian Association of Electrical and Electronics Engineers. 2016; 13 (2) :115-132
URL: http://jiaeee.com/article-1-69-en.html
Abstract:   (2131 Views)

One of the most preprocessing steps before the classification of hyperspectral images is supervised feature extraction. Because obtaining the training samples is hard and time consuming, the number of available training samples is limited. We propose a supervised feature extraction method in this paper that is efficient in small sample size situation. The proposed method, which is called weighted feature line embedding (WFLE), uses the feature line concepts for production of virtual training samples and then, uses them for estimation of within-class and between-class scatter matrices. The new idea of WFLE is based on more correction on the non-appropriate and abnormal samples through weighting process in estimation of scatter matrices. The WFLE is compared with some popular and state-of-the-art feature extraction methods such as LDA, GDA, NWFE, NPE, LPP and NFLE. The experimental results show the good performance of WFLE in comparison with other methods in small sample size situation.

Full-Text [PDF 1909 kb]   (919 Downloads)    
Type of Article: Research | Subject: Communication
Received: 2017/02/1 | Accepted: 2017/02/1 | Published: 2017/02/1

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb