1. [1] R. Z. Davarani, R. Ghazi, N. Pariz, Non-linear analysis of DFIG based wind farm in stressed power systems. IET Renewable Power Generation. 2014; 8(8): 867-877. [
DOI:10.1049/iet-rpg.2013.0149]
2. [2] IRENA (2021), Renewable Energy Statistics 2021. The International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-(Accessed on: 7 Feb, 2022).
3. [3] R. Shah, JC. Sanchez, R. Preece, M. Barnes, Stability and Control of Mixed AC-DC Systems with VSC-HVDC: A Review. IET Generation, Transmission & Distribution. 2018;31(10): 2207-2219. [
DOI:10.1049/iet-gtd.2017.1140]
4. [4] J. Arrillaga, High Voltage Direct Current Transmission. 2nd ed, IEE.1998 [
DOI:10.1049/PBPO029E]
5. [5] H. Xiao, K. Sun, J. Pan, L. Xiao, C. Gan, Y. Liu,: Coordinated frequency regulation among asynchronous AC grids with an MTDC system. International Journal of Electrical Power & Energy Systems, 126, Part A, (2021) [
DOI:10.1016/j.ijepes.2020.106604]
6. [6] EP. Araujo, FD. Bianchi, AJ. Ferré, OG. Bellmunt, Methodology for Droop Control Dynamic Analysis of Multiterminal VSC-HVDC Grids for Offshore Wind Farms. IEEE Transactions on Power Delivery.2011; 26(4): 2476-2485. [
DOI:10.1109/TPWRD.2011.2144625]
7. [7] H. Xiao, K. Sun, J. Pan, Y. Li, Y. Liu, Review of hybrid HVDC Systems Combining Line Communicated Converter and Voltage Source Converter. International Journal of Electrical Power & Energy Systems. 2021; 129. [
DOI:10.1016/j.ijepes.2020.106713]
8. [8] C. Guo, W. Liu, C. Zhao, Iravani RA. Frequency-Based Synchronization Approach for the VSC-HVDC Station Connected to a Weak AC Grid. IEEE Transactions on Power Delivery. 2017; 32(3): 1460-1470. [
DOI:10.1109/TPWRD.2016.2606495]
9. [9] J. Beerten, GB. Diaz, S. DAcro, JA. Suul, Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems. IEEE Transactions on Power Systems. 2015; 31(2): 888-897. [
DOI:10.1109/TPWRD.2015.2467965]
10. [10] Y. Meng, H. Wang, Z. Duan, F. Jia, Z. Du, X. Wang, Small-signal Stability Analysis and Improvement with Phase-shift Phase-locked Loop Based on Back Electromotive Force Observer for VSC-HVDC in Weak Grids. Journal of Modern Power Systems and Clean Energy. 2022; 11(9): 980-989. [
DOI:10.35833/MPCE.2021.000417]
11. [11] Heidary Yazdi S S, Milimonfared J, Fathi S H. Unified Control Structure to Evaluate Grid Code Compatibility of HVDC Interfaced Offshore Wind Power Plant. Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :87-100
12. [12] H. Xiao, Z. Xu, G. Tang, Y. Xue, Complete Mathematical Model Derivation for Modular Multilevel Converter Based on Successive Approximation Approach. IET Power Electron. 2015; 8(12): 2396-2410. [
DOI:10.1049/iet-pel.2014.0892]
13. [13] F.D. Bianchia, J.L. Domínguez-Garcíaa, O. Gomis-Bellmunt, Control of Multi-Terminal HVDC Networks Towards Wind Power Integration: A Review. Renewable and Sustainable Energy Reviews. 2016; 55: 1055-1068. [
DOI:10.1016/j.rser.2015.11.024]
14. [14] O. Gomis-Bellmunta, J. Liangc, J. Ekanayakec, R. Kingc, N. Jenkins, Topologies of Multiterminal HVDC-VSC Transmission for large Offshore Wind farms. Electric Power Systems Research. 2011; 18(2): 271-281. [
DOI:10.1016/j.epsr.2010.09.006]
15. [15] T. Tian, X. Kestelyn, O. Thomas, Normal Form based Analytical Investigation of Nonlinear Power System Dynamics under Excitation. IEEE Power & Energy Society General Meeting. 2017; 16-20. [
DOI:10.1109/PESGM.2017.8273920]
16. [16] A. Zheng, C. Guo, P. Cui, et al. Comparative Study on Small-Signal Stability of LCC-HVDC System With Different Control Strategies at The Inverter Station. IEEE Access. 2019; 7: 34946-34953. [
DOI:10.1109/ACCESS.2019.2904395]
17. [17] C. Guo, C. Zhao, R. Iravani, H. Ding, X. Wang, Impact of Phase-Locked Loop on Small-Signal Dynamics of The Line Commutated Converterbased High-Voltage Direct-Current Station. IET Generation, Transmission & Distribution. 2017; 11(5): 1311-1318. [
DOI:10.1049/iet-gtd.2016.1449]
18. [18] C. Guo, Z. Yin, C. Zhao, R. Iravani, Small-Signal Dynamics of Hybrid LCC-VSC HVDC Systems. Electrical Power & Energy Systems. 2018; 98: 362-372.
https://doi.org/10.1016/j.ijepes.2017.12.010 [
DOI:10.1016/j.ijepes.2017.12.009]
19. [19] C. Guo, A. Zheng, Z. Yin, C. Zhao, Small-Signal Stability of Hybrid Multi-Terminal HVDC System. Electrical Power & Energy Systems. 2019; 109: 434-443. [
DOI:10.1016/j.ijepes.2019.02.031]
20. [20] C. Guo, Z. Yin, Y. Wang, et al. Investigation on Small-Signal Stability of Hybrid LCC-MMC HVDC System. Proceedings of the CSEE. 2019; 39(4): 1040-1052.
21. [21] Y. Wang, C. Zhao, R. Iravani, Small Signal Stability Investigation of the MMC-HVDC Grid. IEEE transactions on power delivery. 2022; 37(5): 4448-4459. [
DOI:10.1109/TPWRD.2022.3172485]
22. [22] L.M. Castro, E. Acha, On the Dynamic Modeling of Marine VSC-HVDC Power Grids Including Offshore Wind Farms. IEEE transactions on sustainable energy, 2020; 11(4): 2889-2900. [
DOI:10.1109/TSTE.2020.2980970]
23. [23] F. Ahmadloo, SP. Azad, Grid interaction of multi-VSC systems for renewable energy integration. IET Renewable Power Generation. 2023; 17(5): 1212-1223. [
DOI:10.1049/rpg2.12676]
24. [24] F. Ahmadloo, SP. Azad, A Robust Controller Design for Mitigating Control Loop Interactions in Multi-VSC Systems Built by Multiple Vendors. IEEE Power & Energy Society General Meeting (PESGM). 2022 July; 17-21. [
DOI:10.1109/PESGM48719.2022.9917195]
25. [25] H. Li, Y. Sun, J. Lin, Z. Liu, Y. Liu, M. Su, Impedance Modeling, Measurement and Stability Analysis of Multi-VSC Systems in αβ Coordinate. IEEE Transactions on Sustainable Energy. 2024; Early Access. [
DOI:10.1109/TSTE.2024.3404490]
26. [26] S. Ruixin, Y. Songhao, H. Zhiguo, Stability Analysis of Sub-/Super-Synchronous Oscillation Based on Closed-Loop Transfer Function Poles of D-PMSG Wind Power Systems. IEEJ Transactions on Electrical and Electronic Engineering. 2022; 17(9): 1267-1275. [
DOI:10.1002/tee.23618]
27. [27] Y. Xue, F. Ge, Z. Zhao, et al. Control Strategy for Hybrid LCC-C-MMC HVDC System Under AC Fault at Rectifier Side. The Journal of Engineering (IET), 2019; 16: 3259-3263. [
DOI:10.1049/joe.2018.8705]
28. [28] D. Xing, J. Su, D. Hu, et al. Solution to Reduce Voltage Stress of Submodule in LCC-MMC Transmission System at The Condition of Communication Fault. The Journal of Engineering (IET). 2019; 16: 1873-1876. [
DOI:10.1049/joe.2018.8744]
29. [29] D. Dimitropoulos, X. Wang, F. Blaabjerg, Stability Analysis in Multi-VSC (Voltage Source Converter) Systems of Wind Turbines. Applied sciences. 2024; 14(8). [
DOI:10.3390/app14083519]
30. [30] P. Zuowei, Y. Zhun, L. Xiuting, L. Yefeng, Y. Tao, Deep Koopman model predictive control for enhancing transient stability in power grids. Int J Robust Nonlinear Control. 2021, 31(6): 1964-1978. [
DOI:10.1002/rnc.5043]
31. [31] C. Guo, J. Zhang, S. Yang, H. Li, C. Fu, A Modified Dynamic Model and Small-Signal Stability Analysis for LCC-HVDC System. CSEE Journal of Power and Energy Systems. 2022; 1-9 (Early Access).
32. [32] Golpîra H, Bevrani H. A New Measurement-Based Approach for Power System Small Signal stability and Voltage Regulation Enhancement . Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :61-72
33. [33] A. Ziaei, R. Ghazi, RZ. Davarani, Interaction Analysis of Multi-terminal Direct Current Transmission Systems Connected to Wind Farm: Determining the Optimal Range of Controller Coefficients. Arabian Journal for Science and Engineering. 2024:1-29. [
DOI:10.1007/s13369-024-08966-y]
34. [34] X. Zhang, J. Bai, G. Cao, C. Chen, Optimizing HVDC Control Parameters in Multi-Infeed HVDC System Based on Electromagnetic Transient Analysis. Electrical Power and Energy Systems. 2013; 49: 449-454. [
DOI:10.1016/j.ijepes.2013.02.005]
35. [35] C. Guoy, W. Liu, C. Zhao, X. Ni, Small-Signal Dynamics and Control Parameters Optimization of Hybrid Multiinfeed HVDC System. Electrical Power and Energy Systems. 2019; 98: 409-418. [
DOI:10.1016/j.ijepes.2017.12.009]
36. [36] C. Guo, P. Cui, C. Zhao, Optimization and Configuration of Control Parameters to Enhance Small-signal Stability of Hybrid LCC-MMC HVDC System. journal of modern power systems and clean energy. 2022; 10(1): 213-221. [
DOI:10.35833/MPCE.2020.000354]
37. [37] T. Huang, F. Yang, D. Zhang, X. Chen, High-Frequency Stability Analysis and Impedance Optimization for an MMC-HVDC Integrated System Considering Delay Effects. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2022; 12(1): 59-72. [
DOI:10.1109/JETCAS.2022.3147197]
38. [38] T. Huang, T. Cao, Z. Ran, B. Wang, Q. Liu, Parameter Optimization Method of MMC Controls Based on Firefly Algorithm. Paper presented at the IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). 2019 May; 21-24. [
DOI:10.1109/ISGT-Asia.2019.8881551]
39. [39] HY. Mahmoud, HM. Hasanien, AH. Besheer, AY. Abdelaziz, Hybrid Cuckoo Search Algorithm and Grey Wolf Optimiser-Based Optimal Control Strategy for Performance Enhancement of HVDC-Based Offshore Wind Farms. IET Generation, Transmission & Distribution. 2020; 14(10): 1902-1911. [
DOI:10.1049/iet-gtd.2019.0801]
40. [40] A. Ahmad, SAR. Kashif, et al. Controller Parameters Optimization for Multi-Terminal DC Power System Using Ant Colony Optimization. IEEE Access. 2021; 9, 59910-59919. [
DOI:10.1109/ACCESS.2021.3073491]
41. [41] NA. Mohamed, HM. Hasanien, EA. Al-Ammar, MT. Véliz, RA. Turky, F. Jurado, AO. Badr, Gorilla Tropical Optimization Algorithm Solution for Performance Enhancement of Offshore Wind Farm. IET Generation, Transmission & Distribution. 2023; 17(10): 2388-2400. [
DOI:10.1049/gtd2.12814]
42. [42] A. Raza, X. Dianguot, S. Sunwen, L. Wiexing, Modeling and Control of Multi Terminal VSC HVDC Transmission System For Integrating Large Offshore Wind Farms. 17th IEEE International Multi Topic Conference. 2014. [
DOI:10.1109/INMIC.2014.7097385]
43. [43] M. Khenara, J. Adabia, E. Pouresmaeil, A. Gholamiana, J.P.S. Catalão, A Control Strategy for A Multi-Terminal HVDC Network Integrating Wind Farms to The AC Grid. International Journal of Electrical Power & Eneergy Systems. 2017; 89: 146-155. [
DOI:10.1016/j.ijepes.2017.01.025]
44. [44] R. Billinton, C. Wu, G. Singh, Extreme Adverse Weather Modeling in Transmission and Distribution System Reliability Evaluation. 14th Power Systems Computation Conference, 2002; 24-28.
45. [45] D.M. Wrad, The Effect of Weather on Grid Systems and The Reliability of Electricity Supply. Springer Science. 2013; 121, 103-113. [
DOI:10.1007/s10584-013-0916-z]
46. [46] https://marketscale.com/industries/building-management/ how-does-weather-affect-the-electrical-grid.
47. [47] Pulgar-Painemal HA. Wind Farm Model for Power System Stability Analysis. Ph.D. dissertation, University of Illinoise at Urbana-Champaign. 2010.