دوره 22، شماره 3 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 3 1404 )                   جلد 22 شماره 3 صفحات 25-4 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ziaei A, Ghazi R, Zeinali Davarani R. Analyzing the interaction effects of controllers loop in VSC-MTDC system integrating wind farms. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :4-25
URL: http://jiaeee.com/article-1-1764-fa.html
ضیائی علی، قاضی رضا، زینلی داورانی روح الامین. بررسی اثرات تداخل حلقه‌های کنترل کننده در سیستمهای انتقال VSC-MTDC متصل به مزارع بادی. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (3) :4-25

URL: http://jiaeee.com/article-1-1764-fa.html


دانشکده مهندسی- دانشگاه فردوسی مشهد
چکیده:   (1885 مشاهده)
: استفاده از سیستمهای انتقال جریان مستقیم ولتاژ بالای چند پایانه‌ای (MT-HVDC) به دلیل وجود مزایای فراوان، افزایش چشمگیری در انتقال توان نیروگاه‌ها به خصوص نیروگاه‌های تجدیدپذیر داشته است. در این میان، احتمال بروز تداخل کنترل‌کننده‌های سیستم انتقال MT-HVDC مبتنی بر مبدلهای منبع ولتاژ (VSC-MTDC) با سایر کنترل کننده‌ها و ادوات شبکه به یکی از نگرانی‌های اصلی تبدیل شده است؛ به گونه‌ای که تحقیقات نشان داده است که سیستم‌های قدرت تحت تنش در پی ایجاد اغتشاشات، رفتارهای دینامیکی پیچیده‌ای را از خود بروز می‌دهند و همین موضوع می‌تواند پایداری سیستم قدرت را به مخاطره بیندازد. در این مقاله، با پیاده‌سازی مدل سیگنال کوچک سیستم VSC-MTDC در اتصال به یک مزرعه بادی مبتنی بر ژنراتورهای DFIG و با استفاده از تحلیل مقدار ویژه به بررسی احتمال بروز تداخل در سیستمهای فوق پرداخته و در ادامه، تاثیر ضرایب کنترل کننده و پارامترهای شبکه بر میرایی مدها ارائه شده است. نتایج تحلیل نشان می‌دهد که پارامترهای کنترل کننده جریان برداری مبدل VSC و امپدانس خط انتقال HVDC تاثیر قابل توجهی بر میرایی مدهای نوسانی داشته به گونه‌ای که انتخاب ناصحیح این مقادیر می‌تواند منجر به ناپایداری مدهای نوسانی گردد. در انتها، به منظور عملکرد پایدار سیستم، بازه بهینه‌ای از ضرایب کنترلی ارائه شده است.
متن کامل [PDF 4884 kb]   (146 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: قدرت
دریافت: 1403/7/8 | پذیرش: 1403/9/14 | انتشار: 1404/9/21

فهرست منابع
1. [1] R. Z. Davarani, R. Ghazi, N. Pariz, Non-linear analysis of DFIG based wind farm in stressed power systems. IET Renewable Power Generation. 2014; 8(8): 867-877. [DOI:10.1049/iet-rpg.2013.0149]
2. [2] IRENA (2021), Renewable Energy Statistics 2021. The International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-(Accessed on: 7 Feb, 2022).
3. [3] R. Shah, JC. Sanchez, R. Preece, M. Barnes, Stability and Control of Mixed AC-DC Systems with VSC-HVDC: A Review. IET Generation, Transmission & Distribution. 2018;31(10): 2207-2219. [DOI:10.1049/iet-gtd.2017.1140]
4. [4] J. Arrillaga, High Voltage Direct Current Transmission. 2nd ed, IEE.1998 [DOI:10.1049/PBPO029E]
5. [5] H. Xiao, K. Sun, J. Pan, L. Xiao, C. Gan, Y. Liu,: Coordinated frequency regulation among asynchronous AC grids with an MTDC system. International Journal of Electrical Power & Energy Systems, 126, Part A, (2021) [DOI:10.1016/j.ijepes.2020.106604]
6. [6] EP. Araujo, FD. Bianchi, AJ. Ferré, OG. Bellmunt, Methodology for Droop Control Dynamic Analysis of Multiterminal VSC-HVDC Grids for Offshore Wind Farms. IEEE Transactions on Power Delivery.2011; 26(4): 2476-2485. [DOI:10.1109/TPWRD.2011.2144625]
7. [7] H. Xiao, K. Sun, J. Pan, Y. Li, Y. Liu, Review of hybrid HVDC Systems Combining Line Communicated Converter and Voltage Source Converter. International Journal of Electrical Power & Energy Systems. 2021; 129. [DOI:10.1016/j.ijepes.2020.106713]
8. [8] C. Guo, W. Liu, C. Zhao, Iravani RA. Frequency-Based Synchronization Approach for the VSC-HVDC Station Connected to a Weak AC Grid. IEEE Transactions on Power Delivery. 2017; 32(3): 1460-1470. [DOI:10.1109/TPWRD.2016.2606495]
9. [9] J. Beerten, GB. Diaz, S. DAcro, JA. Suul, Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems. IEEE Transactions on Power Systems. 2015; 31(2): 888-897. [DOI:10.1109/TPWRD.2015.2467965]
10. [10] Y. Meng, H. Wang, Z. Duan, F. Jia, Z. Du, X. Wang, Small-signal Stability Analysis and Improvement with Phase-shift Phase-locked Loop Based on Back Electromotive Force Observer for VSC-HVDC in Weak Grids. Journal of Modern Power Systems and Clean Energy. 2022; 11(9): 980-989. [DOI:10.35833/MPCE.2021.000417]
11. [11] Heidary Yazdi S S, Milimonfared J, Fathi S H. Unified Control Structure to Evaluate Grid Code Compatibility of HVDC Interfaced Offshore Wind Power Plant. Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :87-100
12. [12] H. Xiao, Z. Xu, G. Tang, Y. Xue, Complete Mathematical Model Derivation for Modular Multilevel Converter Based on Successive Approximation Approach. IET Power Electron. 2015; 8(12): 2396-2410. [DOI:10.1049/iet-pel.2014.0892]
13. [13] F.D. Bianchia, J.L. Domínguez-Garcíaa, O. Gomis-Bellmunt, Control of Multi-Terminal HVDC Networks Towards Wind Power Integration: A Review. Renewable and Sustainable Energy Reviews. 2016; 55: 1055-1068. [DOI:10.1016/j.rser.2015.11.024]
14. [14] O. Gomis-Bellmunta, J. Liangc, J. Ekanayakec, R. Kingc, N. Jenkins, Topologies of Multiterminal HVDC-VSC Transmission for large Offshore Wind farms. Electric Power Systems Research. 2011; 18(2): 271-281. [DOI:10.1016/j.epsr.2010.09.006]
15. [15] T. Tian, X. Kestelyn, O. Thomas, Normal Form based Analytical Investigation of Nonlinear Power System Dynamics under Excitation. IEEE Power & Energy Society General Meeting. 2017; 16-20. [DOI:10.1109/PESGM.2017.8273920]
16. [16] A. Zheng, C. Guo, P. Cui, et al. Comparative Study on Small-Signal Stability of LCC-HVDC System With Different Control Strategies at The Inverter Station. IEEE Access. 2019; 7: 34946-34953. [DOI:10.1109/ACCESS.2019.2904395]
17. [17] C. Guo, C. Zhao, R. Iravani, H. Ding, X. Wang, Impact of Phase-Locked Loop on Small-Signal Dynamics of The Line Commutated Converterbased High-Voltage Direct-Current Station. IET Generation, Transmission & Distribution. 2017; 11(5): 1311-1318. [DOI:10.1049/iet-gtd.2016.1449]
18. [18] C. Guo, Z. Yin, C. Zhao, R. Iravani, Small-Signal Dynamics of Hybrid LCC-VSC HVDC Systems. Electrical Power & Energy Systems. 2018; 98: 362-372. https://doi.org/10.1016/j.ijepes.2017.12.010 [DOI:10.1016/j.ijepes.2017.12.009]
19. [19] C. Guo, A. Zheng, Z. Yin, C. Zhao, Small-Signal Stability of Hybrid Multi-Terminal HVDC System. Electrical Power & Energy Systems. 2019; 109: 434-443. [DOI:10.1016/j.ijepes.2019.02.031]
20. [20] C. Guo, Z. Yin, Y. Wang, et al. Investigation on Small-Signal Stability of Hybrid LCC-MMC HVDC System. Proceedings of the CSEE. 2019; 39(4): 1040-1052.
21. [21] Y. Wang, C. Zhao, R. Iravani, Small Signal Stability Investigation of the MMC-HVDC Grid. IEEE transactions on power delivery. 2022; 37(5): 4448-4459. [DOI:10.1109/TPWRD.2022.3172485]
22. [22] L.M. Castro, E. Acha, On the Dynamic Modeling of Marine VSC-HVDC Power Grids Including Offshore Wind Farms. IEEE transactions on sustainable energy, 2020; 11(4): 2889-2900. [DOI:10.1109/TSTE.2020.2980970]
23. [23] F. Ahmadloo, SP. Azad, Grid interaction of multi-VSC systems for renewable energy integration. IET Renewable Power Generation. 2023; 17(5): 1212-1223. [DOI:10.1049/rpg2.12676]
24. [24] F. Ahmadloo, SP. Azad, A Robust Controller Design for Mitigating Control Loop Interactions in Multi-VSC Systems Built by Multiple Vendors. IEEE Power & Energy Society General Meeting (PESGM). 2022 July; 17-21. [DOI:10.1109/PESGM48719.2022.9917195]
25. [25] H. Li, Y. Sun, J. Lin, Z. Liu, Y. Liu, M. Su, Impedance Modeling, Measurement and Stability Analysis of Multi-VSC Systems in αβ Coordinate. IEEE Transactions on Sustainable Energy. 2024; Early Access. [DOI:10.1109/TSTE.2024.3404490]
26. [26] S. Ruixin, Y. Songhao, H. Zhiguo, Stability Analysis of Sub-/Super-Synchronous Oscillation Based on Closed-Loop Transfer Function Poles of D-PMSG Wind Power Systems. IEEJ Transactions on Electrical and Electronic Engineering. 2022; 17(9): 1267-1275. [DOI:10.1002/tee.23618]
27. [27] Y. Xue, F. Ge, Z. Zhao, et al. Control Strategy for Hybrid LCC-C-MMC HVDC System Under AC Fault at Rectifier Side. The Journal of Engineering (IET), 2019; 16: 3259-3263. [DOI:10.1049/joe.2018.8705]
28. [28] D. Xing, J. Su, D. Hu, et al. Solution to Reduce Voltage Stress of Submodule in LCC-MMC Transmission System at The Condition of Communication Fault. The Journal of Engineering (IET). 2019; 16: 1873-1876. [DOI:10.1049/joe.2018.8744]
29. [29] D. Dimitropoulos, X. Wang, F. Blaabjerg, Stability Analysis in Multi-VSC (Voltage Source Converter) Systems of Wind Turbines. Applied sciences. 2024; 14(8). [DOI:10.3390/app14083519]
30. [30] P. Zuowei, Y. Zhun, L. Xiuting, L. Yefeng, Y. Tao, Deep Koopman model predictive control for enhancing transient stability in power grids. Int J Robust Nonlinear Control. 2021, 31(6): 1964-1978. [DOI:10.1002/rnc.5043]
31. [31] C. Guo, J. Zhang, S. Yang, H. Li, C. Fu, A Modified Dynamic Model and Small-Signal Stability Analysis for LCC-HVDC System. CSEE Journal of Power and Energy Systems. 2022; 1-9 (Early Access).
32. [32] Golpîra H, Bevrani H. A New Measurement-Based Approach for Power System Small Signal stability and Voltage Regulation Enhancement . Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :61-72
33. [33] A. Ziaei, R. Ghazi, RZ. Davarani, Interaction Analysis of Multi-terminal Direct Current Transmission Systems Connected to Wind Farm: Determining the Optimal Range of Controller Coefficients. Arabian Journal for Science and Engineering. 2024:1-29. [DOI:10.1007/s13369-024-08966-y]
34. [34] X. Zhang, J. Bai, G. Cao, C. Chen, Optimizing HVDC Control Parameters in Multi-Infeed HVDC System Based on Electromagnetic Transient Analysis. Electrical Power and Energy Systems. 2013; 49: 449-454. [DOI:10.1016/j.ijepes.2013.02.005]
35. [35] C. Guoy, W. Liu, C. Zhao, X. Ni, Small-Signal Dynamics and Control Parameters Optimization of Hybrid Multiinfeed HVDC System. Electrical Power and Energy Systems. 2019; 98: 409-418. [DOI:10.1016/j.ijepes.2017.12.009]
36. [36] C. Guo, P. Cui, C. Zhao, Optimization and Configuration of Control Parameters to Enhance Small-signal Stability of Hybrid LCC-MMC HVDC System. journal of modern power systems and clean energy. 2022; 10(1): 213-221. [DOI:10.35833/MPCE.2020.000354]
37. [37] T. Huang, F. Yang, D. Zhang, X. Chen, High-Frequency Stability Analysis and Impedance Optimization for an MMC-HVDC Integrated System Considering Delay Effects. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2022; 12(1): 59-72. [DOI:10.1109/JETCAS.2022.3147197]
38. [38] T. Huang, T. Cao, Z. Ran, B. Wang, Q. Liu, Parameter Optimization Method of MMC Controls Based on Firefly Algorithm. Paper presented at the IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). 2019 May; 21-24. [DOI:10.1109/ISGT-Asia.2019.8881551]
39. [39] HY. Mahmoud, HM. Hasanien, AH. Besheer, AY. Abdelaziz, Hybrid Cuckoo Search Algorithm and Grey Wolf Optimiser-Based Optimal Control Strategy for Performance Enhancement of HVDC-Based Offshore Wind Farms. IET Generation, Transmission & Distribution. 2020; 14(10): 1902-1911. [DOI:10.1049/iet-gtd.2019.0801]
40. [40] A. Ahmad, SAR. Kashif, et al. Controller Parameters Optimization for Multi-Terminal DC Power System Using Ant Colony Optimization. IEEE Access. 2021; 9, 59910-59919. [DOI:10.1109/ACCESS.2021.3073491]
41. [41] NA. Mohamed, HM. Hasanien, EA. Al-Ammar, MT. Véliz, RA. Turky, F. Jurado, AO. Badr, Gorilla Tropical Optimization Algorithm Solution for Performance Enhancement of Offshore Wind Farm. IET Generation, Transmission & Distribution. 2023; 17(10): 2388-2400. [DOI:10.1049/gtd2.12814]
42. [42] A. Raza, X. Dianguot, S. Sunwen, L. Wiexing, Modeling and Control of Multi Terminal VSC HVDC Transmission System For Integrating Large Offshore Wind Farms. 17th IEEE International Multi Topic Conference. 2014. [DOI:10.1109/INMIC.2014.7097385]
43. [43] M. Khenara, J. Adabia, E. Pouresmaeil, A. Gholamiana, J.P.S. Catalão, A Control Strategy for A Multi-Terminal HVDC Network Integrating Wind Farms to The AC Grid. International Journal of Electrical Power & Eneergy Systems. 2017; 89: 146-155. [DOI:10.1016/j.ijepes.2017.01.025]
44. [44] R. Billinton, C. Wu, G. Singh, Extreme Adverse Weather Modeling in Transmission and Distribution System Reliability Evaluation. 14th Power Systems Computation Conference, 2002; 24-28.
45. [45] D.M. Wrad, The Effect of Weather on Grid Systems and The Reliability of Electricity Supply. Springer Science. 2013; 121, 103-113. [DOI:10.1007/s10584-013-0916-z]
46. [46] https://marketscale.com/industries/building-management/ how-does-weather-affect-the-electrical-grid.
47. [47] Pulgar-Painemal HA. Wind Farm Model for Power System Stability Analysis. Ph.D. dissertation, University of Illinoise at Urbana-Champaign. 2010.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb