XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari M, Ravanji M H, Mohammad Amini A, Setareh M, Parniani M. A Comprehensive Review of Dynamic Model Order Reduction Methods of Power Systems Using Coherency Methods. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :160-171
URL: http://jiaeee.com/article-1-1747-en.html
EE Department, Sharif University of Technology, Tehran
Abstract:   (1469 Views)
The ever-increasing consumption of electricity has necessitated the continuous expansion of power networks. As these networks grow and the order of the dynamic system models increases, the complexity and duration of numerous studies, such as stability analyses, become excessively high. Therefore, the use of model order reduction techniques becomes crucial. To address this, power engineers typically divide the network under study into two regions: the study area and the external area. A reduced model is then used for the external area to both expedite various studies in the study area and account for the external area's influence in these analyses. This review paper meticulously examines coherency-based methods as the most commonly used techniques for reducing the order of power system models, detailing the advantages and disadvantages of each method. This provides guidance for selecting the most appropriate method for the intended application.
Full-Text [PDF 1427 kb]   (125 Downloads)    
Type of Article: Review | Subject: Power
Received: 2024/07/31 | Accepted: 2024/11/29 | Published: 2025/12/12

References
1. [1] J.S. Rocha-Doria, J.G. Fuentes-Velázquez, and C. Angeles-Camacho, Synchrophasor applications in distribution systems: real-life experience, in Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques. 2023, Elsevier. p. 107-136. [DOI:10.1016/B978-0-32-399904-5.00011-9]
2. [2] A. Vahidnia, et al., Identification and estimation of equivalent area parameters using synchronised phasor measurements. IET Generation, Transmission & Distribution, 2014. 8(4): p. 697-704. [DOI:10.1049/iet-gtd.2013.0285]
3. [3] L. Lugnani, et al., Power system coherency detection from wide-area measurements by typicality-based data analysis. IEEE Transactions on Power Systems, 2021. 37(1): p. 388-401. [DOI:10.1109/TPWRS.2021.3088261]
4. [4] A. Hamid, et al., Deep learning assisted surrogate modeling of large-scale power grids. Sustainable Energy, Grids and Networks, 2023. 34: p. 101031. [DOI:10.1016/j.segan.2023.101031]
5. [5] D. Rafiq, J. Farooq, and M.A. Bazaz, Synergistic use of intrusive and non-intrusive model order reduction techniques for dynamical power grids. International Journal of Electrical Power & Energy Systems, 2022. 138: p. 107908. [DOI:10.1016/j.ijepes.2021.107908]
6. [6] D. Osipov, and K. Sun, Adaptive nonlinear model reduction for fast power system simulation. IEEE Transactions on Power Systems, 2018. 33(6): p. 6746-6754. [DOI:10.1109/TPWRS.2018.2835766]
7. [7] Golpîra H, Bevrani H. A New Measurement-Based Approach for Power System Small Signal stability and Voltage Regulation Enhancement . Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :61-72
8. [8] M.A. Rios, and O. Gomez. Identification of coherent groups and PMU placement for inter-area monitoring based on graph theory. in 2011 IEEE PES Conference on Innovative Smart Grid Technologies Latin America (ISGT LA). 2011. IEEE. [DOI:10.1109/ISGT-LA.2011.6083180]
9. [9] Naderi K, Hesami A. A New Algorithm For Power Systems Controlled Islanding Based on constrained spectral clustering . Journal of Iranian Association of Electrical and Electronics Engineers 2017; 14 (3) :41-54
10. [10] H. Liu, et al., Reduced-Order Modeling of Droop-Controlled Inverters Using Slow Coherency and Aggregation Algorithm. IEEE Transactions on Power Systems, 2022. [DOI:10.1109/TPWRS.2022.3222713]
11. [11] S. Mukherjee, A. Chakrabortty, and S. Babaei, Modeling and quantifying the impact of wind penetration on slow coherency of power systems. IEEE Transactions on Power Systems, 2020. 36(2): p. 1002-1012. [DOI:10.1109/TPWRS.2020.3022832]
12. [12] A. Mehrzad, et al., An Efficient Rapid Method for Generators Coherency Identification in Large Power Systems. IEEE Open Access Journal of Power and Energy, 2022. 9: p. 151-160. [DOI:10.1109/OAJPE.2022.3176357]
13. [13] F. Ma, and V. Vittal, A hybrid dynamic equivalent using ANN-based boundary matching technique. IEEE Transactions on Power Systems, 2012. 27(3): p. 1494-1502. [DOI:10.1109/TPWRS.2012.2182783]
14. [14] I. Tyuryukanov, et al., Slow Coherency Identification and Power System Dynamic Model Reduction by Using Orthogonal Structure of Electromechanical Eigenvectors. IEEE Transactions on Power Systems, 2020. 36(2): p. 1482-1492. [DOI:10.1109/TPWRS.2020.3009628]
15. [15] C. Gianfranco, Review of clustering methods for slow coherency-based generator grouping. Energy Systems Research, 2021. 4(2 (14)): p. 5-20. [DOI:10.38028/esr.2021.02.0001]
16. [16] M.H.R. Koochi, S. Esmaeili, and G. Ledwich, Taxonomy of coherency detection and coherency‐based methods for generators grouping and power system partitioning. IET Generation, Transmission & Distribution, 2019. 13(12): p. 2597-2610. [DOI:10.1049/iet-gtd.2018.7028]
17. [17] R. Singh, M. Elizondo, and S. Lu. A review of dynamic generator reduction methods for transient stability studies. in 2011 IEEE Power and Energy Society General Meeting. 2011. IEEE. [DOI:10.1109/PES.2011.6039791]
18. [18] S. Kai, et al., A review of power system dynamic equivalents for transient stability studies. The Journal of Engineering, 2022. 2022(8): p. 761-772. [DOI:10.1049/tje2.12157]
19. [19] S.D. Đukić, and A.T. Sarić, Dynamic model reduction: An overview of available techniques with application to power systems. Serbian journal of electrical engineering, 2012. 9(2): p. 131-169. [DOI:10.2298/SJEE1202131D]
20. [20] E.P. de Souza, and A.L. da Silva. An efficient methodology for coherency-based dynamic equivalents. in IEE Proceedings C (Generation, Transmission and Distribution). 1992. IET. [DOI:10.1049/ip-c.1992.0054]
21. [21] R. Podmore, A comprehensive program for computing coherency-based dynamic equivalents. in IEEE Conference Proceedings Power Industry Computer Applications Conference, 1979. PICA-79. 1979. IEEE.
22. [22] J.H. Chow, Power system coherency and model reduction. Vol. 84. 2013: Springer. [DOI:10.1007/978-1-4614-1803-0]
23. [23] H. Kim, G. Jang, and K. Song, Dynamic reduction of the large-scale power systems using relation factor. IEEE Transactions on Power Systems, 2004. 19(3): p. 1696-1699. [DOI:10.1109/TPWRS.2004.831697]
24. [24] T. Krishnaparandhama, S. Elangovan, and A. Kuppurajulu, Method for identifying coherent generators. International Journal of Electrical Power & Energy Systems, 1981. 3(2): p. 85-90. [DOI:10.1016/0142-0615(81)90013-2]
25. [25] R. Nath, S.S. Lamba, and K.P. Rao, Coherency based system decomposition into study and external areas using weak coupling. IEEE Transactions on Power Apparatus and Systems, 1985(6): p. 1443-1449. [DOI:10.1109/TPAS.1985.319158]
26. [26] N. Gacic, A. Zecevic, and D. Siljak, Coherency recognition using epsilon decomposition. IEEE transactions on power systems, 1998. 13(2): p. 314-319. [DOI:10.1109/59.667342]
27. [27] B. Spalding, H. Yee, and D. Goudie, Coherency recognition for transient stability studies using singular points. IEEE Transactions on Power Apparatus and Systems, 1977. 96(4): p. 1368-1375. [DOI:10.1109/T-PAS.1977.32463]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)