1. [1] J.S. Rocha-Doria, J.G. Fuentes-Velázquez, and C. Angeles-Camacho, Synchrophasor applications in distribution systems: real-life experience, in Monitoring and Control of Electrical Power Systems Using Machine Learning Techniques. 2023, Elsevier. p. 107-136. [
DOI:10.1016/B978-0-32-399904-5.00011-9]
2. [2] A. Vahidnia, et al., Identification and estimation of equivalent area parameters using synchronised phasor measurements. IET Generation, Transmission & Distribution, 2014. 8(4): p. 697-704. [
DOI:10.1049/iet-gtd.2013.0285]
3. [3] L. Lugnani, et al., Power system coherency detection from wide-area measurements by typicality-based data analysis. IEEE Transactions on Power Systems, 2021. 37(1): p. 388-401. [
DOI:10.1109/TPWRS.2021.3088261]
4. [4] A. Hamid, et al., Deep learning assisted surrogate modeling of large-scale power grids. Sustainable Energy, Grids and Networks, 2023. 34: p. 101031. [
DOI:10.1016/j.segan.2023.101031]
5. [5] D. Rafiq, J. Farooq, and M.A. Bazaz, Synergistic use of intrusive and non-intrusive model order reduction techniques for dynamical power grids. International Journal of Electrical Power & Energy Systems, 2022. 138: p. 107908. [
DOI:10.1016/j.ijepes.2021.107908]
6. [6] D. Osipov, and K. Sun, Adaptive nonlinear model reduction for fast power system simulation. IEEE Transactions on Power Systems, 2018. 33(6): p. 6746-6754. [
DOI:10.1109/TPWRS.2018.2835766]
7. [7] Golpîra H, Bevrani H. A New Measurement-Based Approach for Power System Small Signal stability and Voltage Regulation Enhancement . Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (3) :61-72
8. [8] M.A. Rios, and O. Gomez. Identification of coherent groups and PMU placement for inter-area monitoring based on graph theory. in 2011 IEEE PES Conference on Innovative Smart Grid Technologies Latin America (ISGT LA). 2011. IEEE. [
DOI:10.1109/ISGT-LA.2011.6083180]
9. [9] Naderi K, Hesami A. A New Algorithm For Power Systems Controlled Islanding Based on constrained spectral clustering . Journal of Iranian Association of Electrical and Electronics Engineers 2017; 14 (3) :41-54
10. [10] H. Liu, et al., Reduced-Order Modeling of Droop-Controlled Inverters Using Slow Coherency and Aggregation Algorithm. IEEE Transactions on Power Systems, 2022. [
DOI:10.1109/TPWRS.2022.3222713]
11. [11] S. Mukherjee, A. Chakrabortty, and S. Babaei, Modeling and quantifying the impact of wind penetration on slow coherency of power systems. IEEE Transactions on Power Systems, 2020. 36(2): p. 1002-1012. [
DOI:10.1109/TPWRS.2020.3022832]
12. [12] A. Mehrzad, et al., An Efficient Rapid Method for Generators Coherency Identification in Large Power Systems. IEEE Open Access Journal of Power and Energy, 2022. 9: p. 151-160. [
DOI:10.1109/OAJPE.2022.3176357]
13. [13] F. Ma, and V. Vittal, A hybrid dynamic equivalent using ANN-based boundary matching technique. IEEE Transactions on Power Systems, 2012. 27(3): p. 1494-1502. [
DOI:10.1109/TPWRS.2012.2182783]
14. [14] I. Tyuryukanov, et al., Slow Coherency Identification and Power System Dynamic Model Reduction by Using Orthogonal Structure of Electromechanical Eigenvectors. IEEE Transactions on Power Systems, 2020. 36(2): p. 1482-1492. [
DOI:10.1109/TPWRS.2020.3009628]
15. [15] C. Gianfranco, Review of clustering methods for slow coherency-based generator grouping. Energy Systems Research, 2021. 4(2 (14)): p. 5-20. [
DOI:10.38028/esr.2021.02.0001]
16. [16] M.H.R. Koochi, S. Esmaeili, and G. Ledwich, Taxonomy of coherency detection and coherency‐based methods for generators grouping and power system partitioning. IET Generation, Transmission & Distribution, 2019. 13(12): p. 2597-2610. [
DOI:10.1049/iet-gtd.2018.7028]
17. [17] R. Singh, M. Elizondo, and S. Lu. A review of dynamic generator reduction methods for transient stability studies. in 2011 IEEE Power and Energy Society General Meeting. 2011. IEEE. [
DOI:10.1109/PES.2011.6039791]
18. [18] S. Kai, et al., A review of power system dynamic equivalents for transient stability studies. The Journal of Engineering, 2022. 2022(8): p. 761-772. [
DOI:10.1049/tje2.12157]
19. [19] S.D. Đukić, and A.T. Sarić, Dynamic model reduction: An overview of available techniques with application to power systems. Serbian journal of electrical engineering, 2012. 9(2): p. 131-169. [
DOI:10.2298/SJEE1202131D]
20. [20] E.P. de Souza, and A.L. da Silva. An efficient methodology for coherency-based dynamic equivalents. in IEE Proceedings C (Generation, Transmission and Distribution). 1992. IET. [
DOI:10.1049/ip-c.1992.0054]
21. [21] R. Podmore, A comprehensive program for computing coherency-based dynamic equivalents. in IEEE Conference Proceedings Power Industry Computer Applications Conference, 1979. PICA-79. 1979. IEEE.
22. [22] J.H. Chow, Power system coherency and model reduction. Vol. 84. 2013: Springer. [
DOI:10.1007/978-1-4614-1803-0]
23. [23] H. Kim, G. Jang, and K. Song, Dynamic reduction of the large-scale power systems using relation factor. IEEE Transactions on Power Systems, 2004. 19(3): p. 1696-1699. [
DOI:10.1109/TPWRS.2004.831697]
24. [24] T. Krishnaparandhama, S. Elangovan, and A. Kuppurajulu, Method for identifying coherent generators. International Journal of Electrical Power & Energy Systems, 1981. 3(2): p. 85-90. [
DOI:10.1016/0142-0615(81)90013-2]
25. [25] R. Nath, S.S. Lamba, and K.P. Rao, Coherency based system decomposition into study and external areas using weak coupling. IEEE Transactions on Power Apparatus and Systems, 1985(6): p. 1443-1449. [
DOI:10.1109/TPAS.1985.319158]
26. [26] N. Gacic, A. Zecevic, and D. Siljak, Coherency recognition using epsilon decomposition. IEEE transactions on power systems, 1998. 13(2): p. 314-319. [
DOI:10.1109/59.667342]
27. [27] B. Spalding, H. Yee, and D. Goudie, Coherency recognition for transient stability studies using singular points. IEEE Transactions on Power Apparatus and Systems, 1977. 96(4): p. 1368-1375. [
DOI:10.1109/T-PAS.1977.32463]