1. [1] H. Karami, A. Mostajabi, M. Azadifar, M. Rubinstein, C. Zhuang, and F. Rachidi, "Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines", IEEE Trans. Electromagn. Compat., vol. 62, no. 6, pp. 2512-2519, Dec. 2020, doi: 10.1109/TEMC.2020.2978429. [
DOI:10.1109/TEMC.2020.2978429]
2. [2] K. Mehranzamir, A. B. Pour, Z. Abdul-Malek, H. N. Afrouzi, S. M. Alizadeh, and M. Hashim, "Implementation of Ground-Based Lightning Locating System Using Particle Swarm Optimization Algorithm for Lightning Mapping and Monitoring", Remote Sens. 2023, Vol. 15, Page 2306, vol. 15, no. 9, p. 2306, Apr. 2023, doi: 10.3390/RS15092306. [
DOI:10.3390/rs15092306]
3. [3] T. Zhang, J. Wang, Q. Ma, and L. Fu, "Improving the Detection Effect of Long-Baseline Lightning Location Networks Using PCA and Waveform Cross-Correlation Methods", Remote Sens. 2024, Vol. 16, Page 885, vol. 16, no. 5, p. 885, Mar. 2024, doi: 10.3390/RS16050885. [
DOI:10.3390/rs16050885]
4. [4] H. Abolghasempour and A. A. Razi-Kazemi, "Transient modeling of photovoltaic system (PV) to investigating the peak of transient voltage generated by direct and indirect lightning strikes", J. Iran. Assoc. Electr. Electron. Eng., vol. 20, no. 2, pp. 159-169, 2023. [
DOI:10.52547/jiaeee.20.2.159]
5. [5] R. Shariatinasab and P. Tadayyon, "Estimation of Lightning Performance and Failure Risk of Overhead Lines Caused by Direct Strokes Based on Monte Carlo Method", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 13, no. 1, pp. 85-94, 2016.
6. [6] G. Diendorfer et al., "Review of CIGRE Report 'Cloud-to-Ground Lightning Parameters Derived from Lightning Location Systems - The Effects of System Performance", 2009.
7. [7] K. Mehranzamir, Z. Abdul-Malek, H. Nabipour Afrouzi, S. Vahabi Mashak, C. leong Wooi, and R. Zarei, "Artificial neural network application in an implemented lightning locating system", J. Atmos. Solar-Terrestrial Phys., vol. 210, p. 105437, Nov. 2020, doi: 10.1016/J.JASTP.2020.105437. [
DOI:10.1016/j.jastp.2020.105437]
8. [8] A. Alammari et al., "Lightning mapping: Techniques, challenges, and opportunities", IEEE Access, vol. 8, pp. 190064-190082, 2020, doi: 10.1109/ACCESS.2020.3031810. [
DOI:10.1109/ACCESS.2020.3031810]
9. [9] T. Tantisattayakul, K. Masugata, I. Kitamura, and K. Kontani, "Broadband VHF sources locating system using arrival-time differences for mapping of lightning discharge process", J. Atmos. Solar-Terrestrial Phys., vol. 67, no. 1031-1039, 2005. [
DOI:10.1016/j.jastp.2005.04.002]
10. [10] E. P. Krider, R. C. Noggle, and M. A. Uman, "A Gated, Wideband Magnetic Direction Finder for Lightning Return Strokes", J. Appl. Meteorol. Climatol., vol. 15, no. 3, pp. 301-306, 1976.
https://doi.org/10.1175/1520-0450(1976)015<0301:AGWMDF>2.0.CO;2 [
DOI:10.1175/1520-0450(1976)0152.0.CO;2]
11. [11] A. Mostajabi, H. Karami, M. Azadifar, A. Ghasemi, M. Rubinstein, and F. Rachidi, "Single-Sensor Source Localization Using Electromagnetic Time Reversal and Deep Transfer Learning: Application to Lightning", Sci. Reports 2019 91, vol. 9, no. 1, pp. 1-14, Nov. 2019, doi: 10.1038/s41598-019-53934-4. [
DOI:10.1038/s41598-019-53934-4]
12. [12] G. Lugrin, N. M. Parra, F. Rachidi, M. Rubinstein, and G. Diendorfer, "On the location of lightning discharges using time reversal of electromagnetic fields", IEEE Trans. Electromagn. Compat., vol. 56, no. 1, pp. 149-158, 2014, doi: 10.1109/TEMC.2013.2266932. [
DOI:10.1109/TEMC.2013.2266932]
13. [13] T. Wang, S. Qiu, L. H. Shi, and Y. Li, "Broadband VHF Localization of Lightning Radiation Sources by EMTR", IEEE Trans. Electromagn. Compat., vol. 59, no. 6, pp. 1949-1957, Dec. 2017, doi: 10.1109/TEMC.2017.2651142. [
DOI:10.1109/TEMC.2017.2651142]
14. [14] X. Wang, K. Hu, Y. Wu, and W. Zhou, "A Survey of Deep Learning-Based Lightning Prediction", Atmos. 2023, Vol. 14, Page 1698, vol. 14, no. 11, p. 1698, Nov. 2023, doi: 10.3390/ATMOS14111698. [
DOI:10.3390/atmos14111698]
15. [15] M. Lu et al., "Lightning Strike Location Identification Based on 3D Weather Radar Data", Front. Environ. Sci., vol. 9, p. 714067, Aug. 2021, doi: 10.3389/FENVS.2021.714067/BIBTEX. [
DOI:10.3389/fenvs.2021.714067]
16. [16] S. Rusck, Induced Lightning Over-Voltages on Power-Transmission Lines With Special Reference to the Over-Voltage Protection of Low-Voltage Networks. Stockholm, Sweden: KTH, 1958.
17. [17] I. T. Jollife and J. Cadima, "Principal component analysis: a review and recent developments", Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2065, Apr. 2016, doi: 10.1098/RSTA.2015.0202. [
DOI:10.1098/rsta.2015.0202]
18. [18] M. Ringnér, "What is principal component analysis?", Nat. Biotechnol. 2008 263, vol. 26, no. 3, pp. 303-304, Mar. 2008, doi: 10.1038/nbt0308-303. [
DOI:10.1038/nbt0308-303]
19. [19] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System", Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-August-2016, pp. 785-794, Mar. 2016, doi: 10.1145/2939672.2939785. [
DOI:10.1145/2939672.2939785]
20. [20] Jasmin Praful Bharadiya, "A Tutorial on Principal Component Analysis for Dimensionality Reduction in Machine Learning", Int. J. Innov. Sci. Res. Technol., vol. 8, no. 5, pp. 2028-2032, Jun. 2023, doi: 10.5281/ZENODO.8020810.
21. [21] S. A. Mulaik, "Foundations of factor analysis", p. 524, 2010. [
DOI:10.1201/b15851]