XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi M, Moradi M H, Karami H R, Rachidi F, Rubinstein M. Introducing a fast and efficient machine learning model for lightning localization via Lightning-Induced Voltages on Transmission Lines. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :217-226
URL: http://jiaeee.com/article-1-1736-en.html
Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University
Abstract:   (1484 Views)
Lightning localization is crucial for a wide range of applications. Conventional lightning localization methods typically use at least four antennas as sensors for detecting lightning electromagnetic radiation. One of the complications of these methods is the need for sensor synchronization. Most papers on lightning localization highlight the issues of complexity and synchronization requirements. In this paper, we propose a fast learning model using the XGBoost algorithm for lightning localization. This method utilizes two sensors to receive signals from the induced voltages on transmission lines, eliminating the need for synchronization. By employing the principal component analysis (PCA) algorithm, the input dimensions of the model are reduced, which decreases model complexity, speeds up calculations, reduces hardware resource usage, and enhances accuracy. By training the model with varying numbers of principal components, we can identify the smallest input dimensions that maintain model accuracy. The final model is evaluated using a noisy test dataset. The evaluation results show that the model achieves an accuracy (R²) of over 99%. Additionally, studies indicate that the model's accuracy depends on the configuration of the transmission lines and the position of the sensors.
 
Full-Text [PDF 1559 kb]   (143 Downloads)    
Type of Article: Research | Subject: Power
Received: 2024/06/23 | Accepted: 2025/01/8 | Published: 2025/12/12

References
1. [1] H. Karami, A. Mostajabi, M. Azadifar, M. Rubinstein, C. Zhuang, and F. Rachidi, "Machine Learning-Based Lightning Localization Algorithm Using Lightning-Induced Voltages on Transmission Lines", IEEE Trans. Electromagn. Compat., vol. 62, no. 6, pp. 2512-2519, Dec. 2020, doi: 10.1109/TEMC.2020.2978429. [DOI:10.1109/TEMC.2020.2978429]
2. [2] K. Mehranzamir, A. B. Pour, Z. Abdul-Malek, H. N. Afrouzi, S. M. Alizadeh, and M. Hashim, "Implementation of Ground-Based Lightning Locating System Using Particle Swarm Optimization Algorithm for Lightning Mapping and Monitoring", Remote Sens. 2023, Vol. 15, Page 2306, vol. 15, no. 9, p. 2306, Apr. 2023, doi: 10.3390/RS15092306. [DOI:10.3390/rs15092306]
3. [3] T. Zhang, J. Wang, Q. Ma, and L. Fu, "Improving the Detection Effect of Long-Baseline Lightning Location Networks Using PCA and Waveform Cross-Correlation Methods", Remote Sens. 2024, Vol. 16, Page 885, vol. 16, no. 5, p. 885, Mar. 2024, doi: 10.3390/RS16050885. [DOI:10.3390/rs16050885]
4. [4] H. Abolghasempour and A. A. Razi-Kazemi, "Transient modeling of photovoltaic system (PV) to investigating the peak of transient voltage generated by direct and indirect lightning strikes", J. Iran. Assoc. Electr. Electron. Eng., vol. 20, no. 2, pp. 159-169, 2023. [DOI:10.52547/jiaeee.20.2.159]
5. [5] R. Shariatinasab and P. Tadayyon, "Estimation of Lightning Performance and Failure Risk of Overhead Lines Caused by Direct Strokes Based on Monte Carlo Method", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 13, no. 1, pp. 85-94, 2016.
6. [6] G. Diendorfer et al., "Review of CIGRE Report 'Cloud-to-Ground Lightning Parameters Derived from Lightning Location Systems - The Effects of System Performance", 2009.
7. [7] K. Mehranzamir, Z. Abdul-Malek, H. Nabipour Afrouzi, S. Vahabi Mashak, C. leong Wooi, and R. Zarei, "Artificial neural network application in an implemented lightning locating system", J. Atmos. Solar-Terrestrial Phys., vol. 210, p. 105437, Nov. 2020, doi: 10.1016/J.JASTP.2020.105437. [DOI:10.1016/j.jastp.2020.105437]
8. [8] A. Alammari et al., "Lightning mapping: Techniques, challenges, and opportunities", IEEE Access, vol. 8, pp. 190064-190082, 2020, doi: 10.1109/ACCESS.2020.3031810. [DOI:10.1109/ACCESS.2020.3031810]
9. [9] T. Tantisattayakul, K. Masugata, I. Kitamura, and K. Kontani, "Broadband VHF sources locating system using arrival-time differences for mapping of lightning discharge process", J. Atmos. Solar-Terrestrial Phys., vol. 67, no. 1031-1039, 2005. [DOI:10.1016/j.jastp.2005.04.002]
10. [10] E. P. Krider, R. C. Noggle, and M. A. Uman, "A Gated, Wideband Magnetic Direction Finder for Lightning Return Strokes", J. Appl. Meteorol. Climatol., vol. 15, no. 3, pp. 301-306, 1976. https://doi.org/10.1175/1520-0450(1976)015<0301:AGWMDF>2.0.CO;2 [DOI:10.1175/1520-0450(1976)0152.0.CO;2]
11. [11] A. Mostajabi, H. Karami, M. Azadifar, A. Ghasemi, M. Rubinstein, and F. Rachidi, "Single-Sensor Source Localization Using Electromagnetic Time Reversal and Deep Transfer Learning: Application to Lightning", Sci. Reports 2019 91, vol. 9, no. 1, pp. 1-14, Nov. 2019, doi: 10.1038/s41598-019-53934-4. [DOI:10.1038/s41598-019-53934-4]
12. [12] G. Lugrin, N. M. Parra, F. Rachidi, M. Rubinstein, and G. Diendorfer, "On the location of lightning discharges using time reversal of electromagnetic fields", IEEE Trans. Electromagn. Compat., vol. 56, no. 1, pp. 149-158, 2014, doi: 10.1109/TEMC.2013.2266932. [DOI:10.1109/TEMC.2013.2266932]
13. [13] T. Wang, S. Qiu, L. H. Shi, and Y. Li, "Broadband VHF Localization of Lightning Radiation Sources by EMTR", IEEE Trans. Electromagn. Compat., vol. 59, no. 6, pp. 1949-1957, Dec. 2017, doi: 10.1109/TEMC.2017.2651142. [DOI:10.1109/TEMC.2017.2651142]
14. [14] X. Wang, K. Hu, Y. Wu, and W. Zhou, "A Survey of Deep Learning-Based Lightning Prediction", Atmos. 2023, Vol. 14, Page 1698, vol. 14, no. 11, p. 1698, Nov. 2023, doi: 10.3390/ATMOS14111698. [DOI:10.3390/atmos14111698]
15. [15] M. Lu et al., "Lightning Strike Location Identification Based on 3D Weather Radar Data", Front. Environ. Sci., vol. 9, p. 714067, Aug. 2021, doi: 10.3389/FENVS.2021.714067/BIBTEX. [DOI:10.3389/fenvs.2021.714067]
16. [16] S. Rusck, Induced Lightning Over-Voltages on Power-Transmission Lines With Special Reference to the Over-Voltage Protection of Low-Voltage Networks. Stockholm, Sweden: KTH, 1958.
17. [17] I. T. Jollife and J. Cadima, "Principal component analysis: a review and recent developments", Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2065, Apr. 2016, doi: 10.1098/RSTA.2015.0202. [DOI:10.1098/rsta.2015.0202]
18. [18] M. Ringnér, "What is principal component analysis?", Nat. Biotechnol. 2008 263, vol. 26, no. 3, pp. 303-304, Mar. 2008, doi: 10.1038/nbt0308-303. [DOI:10.1038/nbt0308-303]
19. [19] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System", Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-August-2016, pp. 785-794, Mar. 2016, doi: 10.1145/2939672.2939785. [DOI:10.1145/2939672.2939785]
20. [20] Jasmin Praful Bharadiya, "A Tutorial on Principal Component Analysis for Dimensionality Reduction in Machine Learning", Int. J. Innov. Sci. Res. Technol., vol. 8, no. 5, pp. 2028-2032, Jun. 2023, doi: 10.5281/ZENODO.8020810.
21. [21] S. A. Mulaik, "Foundations of factor analysis", p. 524, 2010. [DOI:10.1201/b15851]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)