XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

abedini A, rashidi B, CHARMAHALI I. A novel algorithm for tracking power in solar cells based on neural network trained with multi verse optimization algorithm. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :193-202
URL: http://jiaeee.com/article-1-1683-en.html
Department of Electrical Engineering, Ayatollah Boroujerdi University, Boroujerd
Abstract:   (1465 Views)
Solar systems need to deliver their output panel voltage to extract the maximum power that can be delivered to the load when the weather conditions change. Such energy compatibility should perform well. That is, it must be ensured that the panel's operating point is close to the maximum value. Therefore, in this article, a new method of power tracking is used, which is based on the combination of neural networks and a meta-heuristic algorithm called multi-order optimization, in order to overcome the problems of conventional methods caused by being slow to respond to temperature changes. and the radiation prevails. Therefore, it has been tried to train the weights of the neural network with a new training method based on the meta-heuristic algorithm so that it can quickly respond to these changes in case of any change in the temperature or the radiation of the controller. To show the efficiency of the proposed method, the results are compared with conventional methods and neural network whose weights are not optimized in different scenarios, which will show higher speed and provide more output power.
 
Full-Text [PDF 2107 kb]   (175 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/12/23 | Accepted: 2025/03/15 | Published: 2025/12/12

References
1. [1] M. Bolinger, G. Bolinger, "Land requirements for utility-scale PV: an empirical update on power and energy density," IEEE Journal of Photovoltaics, vol. 12, no. 2, pp. 589-594, 2022. [DOI:10.1109/JPHOTOV.2021.3136805]
2. [2] Z. Dalala, M. Al-Omari M. Alkasrawi, "Increased renewable energy penetration in national electrical grids constraints and solutions", Energy, vol. 246, article 123361, 2022. [DOI:10.1016/j.energy.2022.123361]
3. [3] D. S. Nair, T. Rajeev, "Impact of reverse power flow due to high solar PV penetration on distribution protection system", in Sustainable Energy and Technological Advancements, pp. 1-13, Springer, 2022. [DOI:10.1007/978-981-16-9033-4_1]
4. [4] A. Hussain, H. A. Sher, A. F. Murtaza, K. Al-Haddad, "Revised perturb and observe approach for maximum power point tracking of photovoltaic module using finite control set model predictive control", in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 962-967, Vancouver, BC, Canada, 2019. [DOI:10.1109/ISIE.2019.8781539]
5. [5] M. Shakiba, M. Shakiba, Mathematical modeling and simulation of the growth of ZnO thin films in Ar/O2 plasma. Journal of Iranian Association of Electrical and Electronics Engineers 2021; 18 (4) :119-128. [DOI:10.52547/jiaeee.18.4.119]
6. [6] N. Karami, N. Moubayed, R. Outbib, "General review and classification of different mppt techniques", Renewable and Sustainable Energy Reviews, vol. 68, pp. 1-18, 2017. [DOI:10.1016/j.rser.2016.09.132]
7. [7] R. Ahmad, A. F. Murtaza, H. A. Sher, "Power tracking techniques for efficient operation of photovoltaic array in solar applications - a review", Renewable and Sustainable Energy Reviews, vol. 101, pp. 82-102, 2019. [DOI:10.1016/j.rser.2018.10.015]
8. [8] A. Dehghanzadehsoraki, G. Farahani, M. Rajabi Mashhadi, Comprehensive Simulation for Two-diode Model of Photovoltaic Cells in SimPowerSystems Using Explicit Mathematical Functions. Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (2) :77-86.
9. [9] M. Hebchi, A. Kouzou, and A. Choucha, "Improved incremental conductance algorithm for mppt in photovoltaic system", in 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1271-1278, Monastir, Tunisia, 2021. [DOI:10.1109/SSD52085.2021.9429365]
10. [10] I. Pervez, A. Sarwar, A. Pervez, M. Tariq, M. Zaid, "An improved maximum power point tracking (MPPT) of a partially shaded solar PV system using PSO with constriction factor (PSO-CF)", in Advances in Electromechanical Technologies. Lecture Notes in Mechanical Engineering, pp. 499-507, Springer, 2021. [DOI:10.1007/978-981-15-5463-6_43]
11. [11] I. Pervez, A. Sarwar, A. Alam, M. Tariq, R. K. Chakrabortty, M. J. Ryan, "An MPPT method using hybrid radial movement optimization with teaching-learning based optimization under fluctuating atmospheric conditions", Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 807-816, 2022. [DOI:10.3233/JIFS-189750]
12. [12] R.B. Bollipo, S. Mikkili, P.K. Bonthagorla, "Hybrid, optimization, intelligent and classical PV MPPT techniques: A Review", CSEE J.Power Energy Syst. 2021, 7, 9-33. Energies 2023.
13. [13] L. Piegari, R. Rizzo, "Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking", IET Renew. Power Gener. 2010, 4, 317-328. [DOI:10.1049/iet-rpg.2009.0006]
14. [14] A.W. Leedy, L.P. Guo, "Aganah, K.A. A constant voltage MPPT method for a solar powered boost converter with DC motor load", In Proceedings of the 2012 IEEE Southeastcon, Orlando, FL, USA, pp. 1-6, 2012. [DOI:10.1109/SECon.2012.6196885]
15. [15] N. Karami, N. Moubayed, R. Outbib, "General review and classification of different MPPT techniques. Renew", Sustain. Energy 68, 1-18, Rev. 2017. [DOI:10.1016/j.rser.2016.09.132]
16. [16] K.S. Tey, S. Mekhilef, "Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level", Solar Energy, 101, 333-342, 2014. [DOI:10.1016/j.solener.2014.01.003]
17. [17] C. G. J. Villegas-Mier, J. M. Rodriguez-Resendiz, H. ÁlvarezAlvarado, A. M. Rodriguez-Resendiz, Herrera-Navarro, O. Rodríguez-Abreo, "Artificial neural networks in mppt algorithms for optimization of photovoltaic power systems: a review", Micromachines, vol. 12, no. 10, p. 1260, 2021. [DOI:10.3390/mi12101260]
18. [18] P. Verma, A. Alam, A. Sarwar, et al., "Meta-heuristic optimization techniques used for maximum power point tracking in solar PV system", Electronics, vol. 10, no. 19, p. 2419, 2021. [DOI:10.3390/electronics10192419]
19. [19] I. Pervez, A. Pervez, M. A. Tariq, R. Sarwar, K. Chakrabortty, M. J. Ryan, "Rapid and robust adaptive jaya based maximum power point tracking of a PV-based generation system", IEEE Access, vol. 9, pp. 48679-48703, 2021. [DOI:10.1109/ACCESS.2020.3028609]
20. [20] C. Larbes, S. A. Cheikh, T. Obeidi, A. Zerguerras, "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system", Renewable Energy, vol. 34, no. 10, pp. 2093-2100, 2009. [DOI:10.1016/j.renene.2009.01.006]
21. [21] X. Li, H. Wen, Y. Hu, L. Jiang, "A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application", Renew. Energy 130, 416-427, 2019. [DOI:10.1016/j.renene.2018.06.071]
22. [22] J.-H. Zhang, X.-Y. Wei, L. Hu, J.-G. Ma, "A MPPT Method based on improved Fibonacci search photovoltaic array", Teh. Vjesn., 26, 163-170, 2019. [DOI:10.17559/TV-20180721153103]
23. [23] H. Rezk, A. Fathy, A.Y. Abdelaziz, "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions", Renew. Sustain. Energy Rev. 74, 377-386, 2017. [DOI:10.1016/j.rser.2017.02.051]
24. [24] N. Ncir, N. El Akchioui, "An advanced intelligent MPPT control strategy based on the imperialist competitive algorithm and artificial neural networks", Evol. Intel., 2023. [DOI:10.1007/s12065-023-00838-y]
25. [25] S. Mohanty, B. Subudhi, P.K. Ray, "A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions", IEEE Trans. Sustain. Energy, 7, 181-188, 2015. [DOI:10.1109/TSTE.2015.2482120]
26. [26] C. Larbes, S. A. Cheikh, T. Obeidi, A. Zerguerras, "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system", Renewable Energy, vol. 34, no. 10, pp. 2093-2100, 2009. [DOI:10.1016/j.renene.2009.01.006]
27. [27] A. G. Al-Gizi, A. Craciunescu, S. J. Al-Chlaihawi, "The use of ANN to supervise the PV MPPT based on FLC", in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 703-708, Bucharest, Romania, 2017. [DOI:10.1109/ATEE.2017.7905128]
28. [28] C. Basha, C. Rani, "Different conventional and soft computing MPPT techniques for solar PV systems with high step-up boost converters: a comprehensive analysis", Energies, vol. 13, no. 2, p. 371, 2020. [DOI:10.3390/en13020371]
29. [29] L. Guanghua, F. Andleeb Siddiqui, Mohsin Aman, et all "maximum power point tracking algorithms by using numerical analysis techniques for photovoltaic systems", Results in Engineering, Vol 21, 2024. [DOI:10.1016/j.rineng.2023.101740]
30. [30] G. Hou, Z. Guo, "Maximum power point tracking of solar photovoltaic under partial shading conditions based on improved salp swarm algorithm", Electric Power Systems Research, Vol 241, PP 105-134. 2025. [DOI:10.1016/j.epsr.2024.111316]
31. [31] V. L. Mishra, Y. K. Chauhan, K. S. Verma, "A new hybrid swarm intelligence-based maximum power point tracking technique for solar photovoltaic systems under varying irradiations", Expert Systems with Applications, Vol 264, PP 202-218, 2025. [DOI:10.1016/j.eswa.2024.125786]
32. [32] V. Hyginus U. Eze, M. Chinweokwu, et al, "Development of maximum power point tracking algorithm based on Improved Optimized Adaptive Differential Conductance Technique for renewable energy generation", Heliyon, Vol 11, Issue 1, 2025. [DOI:10.1016/j.heliyon.2024.e41344]
33. [33] F. Abdelmalek, H. Afghoul, F. Krim, M. Bajaj, V. Blazek, "Experimental validation of novel hybrid Grey Wolf Equilibrium Optimization for MPPT to improve the efficiency of solar photovoltaic system", Results in Engineering, Vol 25, PP 111-125, 2025. [DOI:10.1016/j.rineng.2024.103831]
34. [34] A. Sharma, K A. Nandal, A. Dhaka, A. Alhudhaif, K. Polat, A. Sharma, "Diagnosis of cervical cancer using CNN deep learning model with transfer learning approaches", Biomedical Signal Processing and Control, Vol 105, 2025. [DOI:10.1016/j.bspc.2025.107639]
35. [35] Y. Gao, et al, "Reconstructing multi-orientation irradiance via PV panels: An isotropic Physical-MLP hybrid model", Renewable Energy, Vol 241, 2025. [DOI:10.1016/j.renene.2025.122346]
36. [36] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, "Multi-Verse Optimizer: a nature-inspired global optimization algorithm", The Natural Computing Applications Forum 2015. [DOI:10.1007/s00521-015-1870-7]
37. [37] Salmanpour A, Berahman M. Memristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (1) :9-14. [DOI:10.52547/jiaeee.20.1.9]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)