دوره 22، شماره 3 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 3 1404 )                   جلد 22 شماره 3 صفحات 202-193 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

abedini A, rashidi B, CHARMAHALI I. A novel algorithm for tracking power in solar cells based on neural network trained with multi verse optimization algorithm. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :193-202
URL: http://jiaeee.com/article-1-1683-fa.html
عابدینی محمد، رشیدی بهرام، چهارمحالی ایمان. ارائه الگوریتم جدیدی جهت ردیابی توان در سلول‫های خورشیدی بر پایه شبکه عصبی آموزش داده شده با الگوریتم بهینه‫سازی چند نظمی. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (3) :193-202

URL: http://jiaeee.com/article-1-1683-fa.html


دانشکده فنی و مهندسی، گروه برق، دانشگاه آیت اله بروجردی، بروجرد
چکیده:   (1468 مشاهده)
سیستم های خورشیدی برای استخراج حداکثر توان قابل تحویل به بار هنگام تغییر شرایط آب و هوایی نیازمند به تحویل ماکزیمم ولتاژ پنل خروجی خود دارند. یعنی باید اطمینان حاصل شود که نقطه بهره برداری از پنل نزدیک به مقدار حداکثر است . از این رو در این مقاله از یک روش جدید ردیابی توان استفاده شده است که برپایه ترکیب شبکه های عصبی و یک الگوریتم فراابتکاری به نام بهینه سازی چند نظمی می باشد تا بتواند  بر مشکلات روش های مرسوم ناشی از کند بودن در پاسخ گویی به تغییرات دما و تابش غلبه نماید. بنابراین سعی شده است تا با روش آموزش جدید برپایه الگوریتم فرا ابتکاری وزن های شبکه عصبی را به نحوی آموزش داد تا در صورت هر تغییری در دما و یا تابش کنترل کننده به سرعت به این تغییرات پاسخ دهد. برای نمایش دادن کارایی از روش پیشنهادی در انتها نتایج با روش های مرسوم و شبکه عصبی که وزن های آن بهینه نشده است در سناریوهای مختلف مقایسه می گردد که نشان از سرعت بالاتر  و فراهم آوردن توان بیشتری در خروجی با حداقل نوسانات خواهد بود.
متن کامل [PDF 2107 kb]   (181 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: قدرت
دریافت: 1402/10/2 | پذیرش: 1403/12/25 | انتشار: 1404/9/21

فهرست منابع
1. [1] M. Bolinger, G. Bolinger, "Land requirements for utility-scale PV: an empirical update on power and energy density," IEEE Journal of Photovoltaics, vol. 12, no. 2, pp. 589-594, 2022. [DOI:10.1109/JPHOTOV.2021.3136805]
2. [2] Z. Dalala, M. Al-Omari M. Alkasrawi, "Increased renewable energy penetration in national electrical grids constraints and solutions", Energy, vol. 246, article 123361, 2022. [DOI:10.1016/j.energy.2022.123361]
3. [3] D. S. Nair, T. Rajeev, "Impact of reverse power flow due to high solar PV penetration on distribution protection system", in Sustainable Energy and Technological Advancements, pp. 1-13, Springer, 2022. [DOI:10.1007/978-981-16-9033-4_1]
4. [4] A. Hussain, H. A. Sher, A. F. Murtaza, K. Al-Haddad, "Revised perturb and observe approach for maximum power point tracking of photovoltaic module using finite control set model predictive control", in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 962-967, Vancouver, BC, Canada, 2019. [DOI:10.1109/ISIE.2019.8781539]
5. [5] M. Shakiba, M. Shakiba, Mathematical modeling and simulation of the growth of ZnO thin films in Ar/O2 plasma. Journal of Iranian Association of Electrical and Electronics Engineers 2021; 18 (4) :119-128. [DOI:10.52547/jiaeee.18.4.119]
6. [6] N. Karami, N. Moubayed, R. Outbib, "General review and classification of different mppt techniques", Renewable and Sustainable Energy Reviews, vol. 68, pp. 1-18, 2017. [DOI:10.1016/j.rser.2016.09.132]
7. [7] R. Ahmad, A. F. Murtaza, H. A. Sher, "Power tracking techniques for efficient operation of photovoltaic array in solar applications - a review", Renewable and Sustainable Energy Reviews, vol. 101, pp. 82-102, 2019. [DOI:10.1016/j.rser.2018.10.015]
8. [8] A. Dehghanzadehsoraki, G. Farahani, M. Rajabi Mashhadi, Comprehensive Simulation for Two-diode Model of Photovoltaic Cells in SimPowerSystems Using Explicit Mathematical Functions. Journal of Iranian Association of Electrical and Electronics Engineers 2019; 16 (2) :77-86.
9. [9] M. Hebchi, A. Kouzou, and A. Choucha, "Improved incremental conductance algorithm for mppt in photovoltaic system", in 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1271-1278, Monastir, Tunisia, 2021. [DOI:10.1109/SSD52085.2021.9429365]
10. [10] I. Pervez, A. Sarwar, A. Pervez, M. Tariq, M. Zaid, "An improved maximum power point tracking (MPPT) of a partially shaded solar PV system using PSO with constriction factor (PSO-CF)", in Advances in Electromechanical Technologies. Lecture Notes in Mechanical Engineering, pp. 499-507, Springer, 2021. [DOI:10.1007/978-981-15-5463-6_43]
11. [11] I. Pervez, A. Sarwar, A. Alam, M. Tariq, R. K. Chakrabortty, M. J. Ryan, "An MPPT method using hybrid radial movement optimization with teaching-learning based optimization under fluctuating atmospheric conditions", Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 807-816, 2022. [DOI:10.3233/JIFS-189750]
12. [12] R.B. Bollipo, S. Mikkili, P.K. Bonthagorla, "Hybrid, optimization, intelligent and classical PV MPPT techniques: A Review", CSEE J.Power Energy Syst. 2021, 7, 9-33. Energies 2023.
13. [13] L. Piegari, R. Rizzo, "Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking", IET Renew. Power Gener. 2010, 4, 317-328. [DOI:10.1049/iet-rpg.2009.0006]
14. [14] A.W. Leedy, L.P. Guo, "Aganah, K.A. A constant voltage MPPT method for a solar powered boost converter with DC motor load", In Proceedings of the 2012 IEEE Southeastcon, Orlando, FL, USA, pp. 1-6, 2012. [DOI:10.1109/SECon.2012.6196885]
15. [15] N. Karami, N. Moubayed, R. Outbib, "General review and classification of different MPPT techniques. Renew", Sustain. Energy 68, 1-18, Rev. 2017. [DOI:10.1016/j.rser.2016.09.132]
16. [16] K.S. Tey, S. Mekhilef, "Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level", Solar Energy, 101, 333-342, 2014. [DOI:10.1016/j.solener.2014.01.003]
17. [17] C. G. J. Villegas-Mier, J. M. Rodriguez-Resendiz, H. ÁlvarezAlvarado, A. M. Rodriguez-Resendiz, Herrera-Navarro, O. Rodríguez-Abreo, "Artificial neural networks in mppt algorithms for optimization of photovoltaic power systems: a review", Micromachines, vol. 12, no. 10, p. 1260, 2021. [DOI:10.3390/mi12101260]
18. [18] P. Verma, A. Alam, A. Sarwar, et al., "Meta-heuristic optimization techniques used for maximum power point tracking in solar PV system", Electronics, vol. 10, no. 19, p. 2419, 2021. [DOI:10.3390/electronics10192419]
19. [19] I. Pervez, A. Pervez, M. A. Tariq, R. Sarwar, K. Chakrabortty, M. J. Ryan, "Rapid and robust adaptive jaya based maximum power point tracking of a PV-based generation system", IEEE Access, vol. 9, pp. 48679-48703, 2021. [DOI:10.1109/ACCESS.2020.3028609]
20. [20] C. Larbes, S. A. Cheikh, T. Obeidi, A. Zerguerras, "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system", Renewable Energy, vol. 34, no. 10, pp. 2093-2100, 2009. [DOI:10.1016/j.renene.2009.01.006]
21. [21] X. Li, H. Wen, Y. Hu, L. Jiang, "A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application", Renew. Energy 130, 416-427, 2019. [DOI:10.1016/j.renene.2018.06.071]
22. [22] J.-H. Zhang, X.-Y. Wei, L. Hu, J.-G. Ma, "A MPPT Method based on improved Fibonacci search photovoltaic array", Teh. Vjesn., 26, 163-170, 2019. [DOI:10.17559/TV-20180721153103]
23. [23] H. Rezk, A. Fathy, A.Y. Abdelaziz, "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions", Renew. Sustain. Energy Rev. 74, 377-386, 2017. [DOI:10.1016/j.rser.2017.02.051]
24. [24] N. Ncir, N. El Akchioui, "An advanced intelligent MPPT control strategy based on the imperialist competitive algorithm and artificial neural networks", Evol. Intel., 2023. [DOI:10.1007/s12065-023-00838-y]
25. [25] S. Mohanty, B. Subudhi, P.K. Ray, "A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions", IEEE Trans. Sustain. Energy, 7, 181-188, 2015. [DOI:10.1109/TSTE.2015.2482120]
26. [26] C. Larbes, S. A. Cheikh, T. Obeidi, A. Zerguerras, "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system", Renewable Energy, vol. 34, no. 10, pp. 2093-2100, 2009. [DOI:10.1016/j.renene.2009.01.006]
27. [27] A. G. Al-Gizi, A. Craciunescu, S. J. Al-Chlaihawi, "The use of ANN to supervise the PV MPPT based on FLC", in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 703-708, Bucharest, Romania, 2017. [DOI:10.1109/ATEE.2017.7905128]
28. [28] C. Basha, C. Rani, "Different conventional and soft computing MPPT techniques for solar PV systems with high step-up boost converters: a comprehensive analysis", Energies, vol. 13, no. 2, p. 371, 2020. [DOI:10.3390/en13020371]
29. [29] L. Guanghua, F. Andleeb Siddiqui, Mohsin Aman, et all "maximum power point tracking algorithms by using numerical analysis techniques for photovoltaic systems", Results in Engineering, Vol 21, 2024. [DOI:10.1016/j.rineng.2023.101740]
30. [30] G. Hou, Z. Guo, "Maximum power point tracking of solar photovoltaic under partial shading conditions based on improved salp swarm algorithm", Electric Power Systems Research, Vol 241, PP 105-134. 2025. [DOI:10.1016/j.epsr.2024.111316]
31. [31] V. L. Mishra, Y. K. Chauhan, K. S. Verma, "A new hybrid swarm intelligence-based maximum power point tracking technique for solar photovoltaic systems under varying irradiations", Expert Systems with Applications, Vol 264, PP 202-218, 2025. [DOI:10.1016/j.eswa.2024.125786]
32. [32] V. Hyginus U. Eze, M. Chinweokwu, et al, "Development of maximum power point tracking algorithm based on Improved Optimized Adaptive Differential Conductance Technique for renewable energy generation", Heliyon, Vol 11, Issue 1, 2025. [DOI:10.1016/j.heliyon.2024.e41344]
33. [33] F. Abdelmalek, H. Afghoul, F. Krim, M. Bajaj, V. Blazek, "Experimental validation of novel hybrid Grey Wolf Equilibrium Optimization for MPPT to improve the efficiency of solar photovoltaic system", Results in Engineering, Vol 25, PP 111-125, 2025. [DOI:10.1016/j.rineng.2024.103831]
34. [34] A. Sharma, K A. Nandal, A. Dhaka, A. Alhudhaif, K. Polat, A. Sharma, "Diagnosis of cervical cancer using CNN deep learning model with transfer learning approaches", Biomedical Signal Processing and Control, Vol 105, 2025. [DOI:10.1016/j.bspc.2025.107639]
35. [35] Y. Gao, et al, "Reconstructing multi-orientation irradiance via PV panels: An isotropic Physical-MLP hybrid model", Renewable Energy, Vol 241, 2025. [DOI:10.1016/j.renene.2025.122346]
36. [36] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, "Multi-Verse Optimizer: a nature-inspired global optimization algorithm", The Natural Computing Applications Forum 2015. [DOI:10.1007/s00521-015-1870-7]
37. [37] Salmanpour A, Berahman M. Memristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (1) :9-14. [DOI:10.52547/jiaeee.20.1.9]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb