1. [1] hasanpour S. Design and Implementation of a New Step-Up DC-DC Converter with Two Extended Outputs for Renewable Energy Applications. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :13-24 [
DOI:10.61186/jiaeee.21.2.13]
2. [2] Parin F, Farshidi E, fani R. Analysis, design and implementation of a new high step-up DC-DC converter with active coupled inductor network for a sustainable energy system. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (1) :85-95 [
DOI:10.61186/jiaeee.21.1.85]
3. [3] A. Rajamallaiah, S. P. K. Karri, and Y. R. Sankar, "Deep Reinforcement Learning Based Control Strategy for Voltage Regulation of DC-DC Buck Converter Feeding CPLs in DC Microgrid", IEEE Access, vol. 12, pp.17419-17430, 2024. [
DOI:10.1109/ACCESS.2024.3358412]
4. [4] S. Hosseinnataj, M. Yazdani, M. Shekari, M. Jani, and J. Adabi, "Bidirectional DISO DC-DC converter based on Lyapunov control strategy", 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2023, pp. 1-5: IEEE. [
DOI:10.1109/PEDSTC57673.2023.10087050]
5. [5] M. N. Dehaghania, M. Biglarahmadia, S. M. Mousavi, and M. A. Abdolahi, "A Distributed Cooperative Secondary Control Scheme for Obtaining Power and Voltage References of Distributed Generations in Islanded DC Microgrids", International Journal of Engineering, vol. 37, no. 2, p. 341, 2024. [
DOI:10.5829/IJE.2024.37.02B.10]
6. [6] M. A. Hassan, C.-L. Su, J. Pou, D. Almakhles, T.-S. Zhan, and K.-Y. Lo, "Robust Passivity-Based Control for Interleaved Bidirectional dc-dc Power Converter With Constant Power Loads in DC Shipboard Microgrid", IEEE Transactions on Transportation, vol. 10, no. 2, pp.3590-3602, 2023. [
DOI:10.1109/TTE.2023.3307878]
7. [7] A. M. Abdurraqeeb et al., "Stabilization of constant power loads and dynamic current sharing in DC microgrid using robust control technique", Electric Power Systems Research, vol. 230, p.110258, 2024. [
DOI:10.1016/j.epsr.2024.110258]
8. [8] M. Abdolahi, J. Adabi, S. Y. Mousazadeh Mousavi, and Applications, "A passivity control and developed nonlinear disturbance observer for boost converter with constant power load in DC microgrid", International Journal of Circuit Theory and Applications, Vol. 52, no. 11, pp. 5859-5876, 2024. [
DOI:10.1002/cta.4042]
9. [9] M. A. Hassan et al., "DC Shipboard Microgrids with Constant Power Loads: A Review of Advanced Nonlinear Control Strategies and Stabilization Techniques", IEEE Transactions on Smart Grid, vol. 13, no. 5, pp.3422-3438, 2022. [
DOI:10.1109/TSG.2022.3168267]
10. [10] C. A. Torres-Pinzón, F. Flores-Bahamonde, J. A. Garriga-Castillo, H. Valderrama-Blavi, R. Haroun, and L. Martinez-Salamero, "Sliding-mode control of a quadratic buck converter with constant power load", IEEE Access, vol. 10, pp. 71837-71852, 2022. [
DOI:10.1109/ACCESS.2022.3186312]
11. [11] M. Cao, S. Li, J. Yang, and K. Zhang, "Mismatched Disturbance Compensation Enhanced Robust H∞ Control for the DC-DC Boost Converter Feeding Constant Power Loads", IEEE Transactions on Energy Conversion, vol.38, no. 2, pp. 1300-1310, 2022. [
DOI:10.1109/TEC.2022.3226472]
12. [12] Q. Xu, C. Zhang, C. Wen, and P. Wang, "A novel composite nonlinear controller for stabilization of constant power load in DC microgrid", IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 752-761, 2017. [
DOI:10.1109/TSG.2017.2751755]
13. [13] Z. Ding and Applications, "Semi-global stabilisation of a class of non-minimum phase non-linear output-feedback systems", IEE Proceedings-Control Theory and Applications vol. 152, no. 4, pp. 460-464, 2005. [
DOI:10.1049/ip-cta:20041246]
14. [14] M. Abdolahi, J. Adabi, and S. Y. M. Mousavi, "An Adaptive Extended Kalman Filter with Passivity-Based Control for DC-DC Converter in DC Microgrids Supplying Constant Power Loads", IEEE Transactions on Industrial Electronics, vol. 71, no .05, pp.4873-4882, 2023. [
DOI:10.1109/TIE.2023.3283686]
15. [15] S. Singh, D. Fulwani, and V. Kumar, "Robust sliding‐mode control of dc/dc boost converter feeding a constant power load", IET Power Electronics, vol. 8, no. 7, pp. 1230-1237, 2015. [
DOI:10.1049/iet-pel.2014.0534]
16. [16] M. Saeedi, J. Zarei, R. Razavi-Far, and M. Saif, "Event-triggered adaptive optimal fast terminal sliding mode control under denial-of-service attacks", IEEE Systems Journal, vol. 16, no. 2, pp. 2684-2692, 2021. [
DOI:10.1109/JSYST.2021.3073816]
17. [17] B. A. Unni and P. R. Kumar, "Higher order sliding mode control based duty-ratio controller for the DC/DC buck converter with constant power loads", 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 656-661: IEEE. [
DOI:10.1109/ICEEOT.2016.7754763]
18. [18] H. El Fadil and F. Giri, "Backstepping based control of PWM DC-DC boost power converters", 2007 IEEE international symposium on industrial electronics, 2007, pp. 395-400: IEEE. [
DOI:10.1109/ISIE.2007.4374630]
19. [19] X. Li, X. Zhang, W. Jiang, J. Wang, P. Wang, and X. Wu, "A novel assorted nonlinear stabilizer for DC-DC multilevel boost converter with constant power load in DC microgrid", IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 11181-11192, 2020. [
DOI:10.1109/TPEL.2020.2978873]
20. [20] J. Wu and Y. Lu, "Adaptive backstepping sliding mode control for boost converter with constant power load", IEEE Access vol. 7, pp. 50797-50807, 2019. [
DOI:10.1109/ACCESS.2019.2910936]
21. [21] M. Alipour, J. Zarei, R. Razavi-Far, M. Saif, N. Mijatovic, and T. Dragičević, "Observer-based backstepping sliding mode control design for microgrids feeding a constant power load", IEEE Transactions on Industrial Electronics vol. 70, no. 1, pp. 465-473, 2022. [
DOI:10.1109/TIE.2022.3152028]