Volume 22, Issue 3 (JIAEEE Vol.22 No.3 2025)                   Journal of Iranian Association of Electrical and Electronics Engineers 2025, 22(3): 56-68 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinpour M, Derakhshandeh M, Shahparasti M. A New Switched Capacitor 17-Level Inverter with Reduced Devices and Limited Charge Current. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (3) :56-68
URL: http://jiaeee.com/article-1-1670-en.html
Faculty of Engineering, University of Mohaghegh Ardabili
Abstract:   (1483 Views)
In this paper, a new switched-capacitor multilevel inverter with a fourfold voltage gain is proposed. The proposed topology utilizes a DC source, 11 switches, and a diode to achieve 17-level output voltage levels. This topology consists of three capacitors with the capability for self-balancing voltages. The capacitors achieve automatic voltage balancing through a series/parallel connection method with the input DC voltage source. To control the switching pulses of the switches, the Level Shifted Pulse Width Modulation (PWM-LS) strategy has been employed. A comparative evaluation has been performed between the proposed topology and recent presented structures, considering various parameters such as voltage gain, number of DC sources, number of semiconductor devices, Maximum Blocking Voltage (MBV), and Total Standing Voltage (TSV). Considering this comparison, the low number of semiconductor devices for generating a 17-level output with suitable voltage gain, and especially its cost-effectiveness superiority, are the main advantages of the proposed topology. In addition, a soft charging method has been employed to limit the inrush current of capacitors. Moreover, the power losses of the proposed topology have been investigated, indicating its acceptable efficiency. Finally, for the analysis and validation of the proposed structure's performance, an experimental prototype has been implemented and evaluated under various conditions. The results indicate satisfactory performance of the proposed topology under various operating conditions.
Full-Text [PDF 2109 kb]   (150 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/11/28 | Accepted: 2024/12/12 | Published: 2025/12/12

References
1. [1] M. Trabelsi, H. Vahedi, and H. Abu-Rub, 2021. Review on single-DC-source multilevel inverters: Topologies, challenges, industrial applications, and recommendations. IEEE open journal of the Industrial Electronics Society, 2, pp.112-127. [DOI:10.1109/OJIES.2021.3054666]
2. [2] Hosseinpour M, Seifi A. Design and Implementation of a New Switch-Diode based Single Source Multilevel Inverter Topology. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (4) :57-69 [DOI:10.52547/jiaeee.19.4.57]
3. [3] A. Seifi, M. Hosseinpour, and , A. Dejamkhooy2021. A switch-source cell-based cascaded multilevel inverter topology with minimum number of power electronics components. Transactions of the Institute of Measurement and Control, 43(5), pp.1212-1225. [DOI:10.1177/0142331220974137]
4. [4] M. Sarebanzadeh, M.A. Hosseinzadeh, C. Garcia, E. Babaei, M. Hosseinpour, A. Seifi, and J. Rodriguez, 2021. A 15-Level Switched-Capacitor Multilevel Inverter Structure With Self-Balancing Capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), pp.1477-1481. [DOI:10.1109/TCSII.2021.3123115]
5. [5] Noori M, Hosseinpour M, Mousavi-Aghdam S R. Single Source Switched Capacitor Multilevel inverter with Voltage Boosting Capability and Low Switch Count. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :47-59 [DOI:10.61186/jiaeee.21.2.47]
6. [6] P.R. Bana, K.P. Panda, R.T. Naayagi, P. Siano, and G. Panda, 2019. Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation. IEEE access, 7, pp.54888-54909. [DOI:10.1109/ACCESS.2019.2913447]
7. [7] G.A. Saccol, J.C. Giacomini, A.L. Batschauer, and C. Rech, 2018. Comprehensive analysis of single-phase full-bridge asymmetrical flying capacitor inverters. IEEE Transactions on Industry Applications, 55(2), pp.1775-1786. [DOI:10.1109/TIA.2018.2883549]
8. [8] M. Derakhshandeh, M. Hosseinpour, A. Seifi, and M. Shahparasti, 2024. An enhanced 13‐level triple voltage gain switched capacitor inverter with lower power electronics devices. IET Power Electronics. [DOI:10.1049/pel2.12748]
9. [9] M. Hosseinpour, M. Noori, and M. Shahparasti, 2024. A 17-level octuple boost switched-capacitor inverter with lower voltage stress on devices. Scientific Reports, 14(1), p.14411. [DOI:10.1038/s41598-024-65211-0]
10. [10] S. Islam, M.D. Siddique, A. Iqbal, S. Mekhilef, and M. Al-Hitmi, 2022. A Switched Capacitor-Based 13-Level Inverter with Reduced Switch Count. IEEE Transactions on Industry Applications, 58(6), pp.7373-7383. [DOI:10.1109/TIA.2022.3191302]
11. [11] P.R. Bana, K.P. Panda, S. Padmanaban, and G. Panda, 2020. Extendable switched-capacitor multilevel inverter with reduced number of components and self-balancing capacitors. IEEE Transactions on Industry Applications, 57(3), pp.3154-3163 [DOI:10.1109/TIA.2020.3018422]
12. [12] M.F. Talooki, M. Rezanejad, R. Khosravi, and E. Samadaei, 2020. A novel high step-up switched-capacitor multilevel inverter with self-voltage balancing. IEEE Transactions on Power Electronics, 36(4), pp.4352-4359. [DOI:10.1109/TPEL.2020.3019223]
13. [13] N. Sandeep, 2020. A 13-level switched-capacitor-based boosting inverter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(3), pp.998-1002. [DOI:10.1109/TCSII.2020.3017338]
14. [14] V. Anand, V. Singh, X. Guo, M.A.J. Sathik, Y.P. Siwakoti, S. Mekhilef, and F. Blaabjerg, 2023. Seventeen Level Switched Capacitor Inverters With the Capability of High Voltage Gain and Low Inrush Current. IEEE Journal of Emerging and Selected Topics in Industrial Electronics. [DOI:10.1109/JESTIE.2023.3291996]
15. [15] H.K. Jahan, M. Abapour, and K. Zare, 2018. Switched-capacitor-based single-source cascaded H-bridge multilevel inverter featuring boosting ability. IEEE Transactions on Power Electronics, 34(2), pp.1113-1124. [DOI:10.1109/TPEL.2018.2830401]
16. [16] M. Abapour, K. Zare, S.H. Hosseini, F. Blaabjerg, and Y. Yang, 2019. A multilevel inverter with minimized components featuring self-balancing and boosting capabilities for PV applications. IEEE Journal of Emerging and Selected Topics in Power Electronics.
17. [17] A.K. Singh, and R.K. Mandal, 2022. A Novel 17-level reduced component single DC switched-capacitor-based inverter with reduced input spike current. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(5), pp.6045-6056. [DOI:10.1109/JESTPE.2022.3166222]
18. [18] A. Sheir, M.Z. Youssef, and M. Orabi, 2018. A novel bidirectional T-type multilevel inverter for electric vehicle applications. IEEE Transactions on Power Electronics, 34(7), pp.6648-6658. [DOI:10.1109/TPEL.2018.2871624]
19. [19] B. P. McGrath and D. G. Holmes, "Multicarrier PWM strategies for multilevel inverters", IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 858-867, Aug. 2002. [DOI:10.1109/TIE.2002.801073]
20. [20] H.R. Baghaee, A.K. Kaviani, M. Mirsalim, and G.B. Gharehpetian, 2012, February. Harmonic optimization in single DC source multi-level inverters using RBF neural networks. In 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC) (pp. 403-409). IEEE. [DOI:10.1109/PEDSTC.2012.6183364]
21. [21] S. Du, J. Liu, and T. Liu, 2014. Modulation and closed-loop-based DC capacitor voltage control for MMC with fundamental switching frequency. IEEE Transactions on Power Electronics, 30(1), pp.327-338. [DOI:10.1109/TPEL.2014.2301836]
22. [22] M.D. Siddique, B. Prathap Reddy, A. Iqbal, and S. Mekhilef, 2020. Reduced switch count‐based N‐level boost inverter topology for higher voltage gain. IET Power Electronics, 13(15), pp.3505-3509. [DOI:10.1049/iet-pel.2020.0359]
23. [23] H. Shayeghi, A. Seifi, M. Hosseinpour, and N. Bizon, 2022. Developing a Generalized Multi-Level Inverter with Reduced Number of Power Electronics Components. Sustainability, 14(9), p.5545. [DOI:10.3390/su14095545]
24. [24] A. Seifi, M. Hosseinpour, and S.H. Hosseini, 2023. A novel bidirectional modular multilevel inverter utilizing diode‐based bidirectional unit. International Journal of Circuit Theory and Applications. [DOI:10.1002/cta.3582]
25. [25] P. Bhatnagar, A.K. Singh, K.K. Gupta, and Y.P. Siwakoti, 2021. A switched-capacitors-based 13-level inverter. IEEE Transactions on Power Electronics, 37(1), pp.644-658. [DOI:10.1109/TPEL.2021.3098827]
26. [26] Y. Ye, S. Chen, T. Hua, M. Lin, and X. Wang, 2021. Self-balanced multilevel inverter with hybrid double-and half-mode switched capacitor. IEEE Transactions on Industrial Electronics, 69(6), pp.5735-5744. [DOI:10.1109/TIE.2021.3086725]
27. [27] S. Majumdar, K.C. Jana, P.K. Pal, A. Sangwongwanich, and F. Blaabjerg, 2021. Design and implementation of a single-source 17-level inverter for a single-phase transformer-less grid-connected photovoltaic systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), pp.4469-4485. [DOI:10.1109/JESTPE.2021.3133369]
28. [28] M.S.B. Arif, U. Mustafa, S.B.M. Ayob, J. Rodriguez, A. Nadeem, and M. Abdelrahem, 2021. Asymmetrical 17-level inverter topology with reduced total standing voltage and device count. IEEE Access, 9, pp.69710-69723. [DOI:10.1109/ACCESS.2021.3077968]
29. [29] M.A. Hosseinzadeh, M. Sarebanzadeh, C.F. Garcia, E. Babaei, J. Rodriguez, and R. Kennel, 2022. Reduced multisource switched-capacitor multilevel inverter topologies. IEEE Transactions on Power Electronics, 37(12), pp.14647-14666. [DOI:10.1109/TPEL.2022.3191013]
30. [30] K.P. Panda, P.R. Bana, O. Kiselychnyk, J. Wang, and G. Panda, 2021. A single-source switched-capacitor-based step-up multilevel inverter with reduced components. IEEE Transactions on Industry Applications, 57(4), pp.3801-3811. [DOI:10.1109/TIA.2021.3068076]
31. [31] J. Sathik, D. Almakhles, and M.F. Elmorshedy, 2023. High Boost Seventeen Level Switched Capacitor Inverter Topology with Continuous Input Current. IEEE Journal of Emerging and Selected Topics in Power Electronics.
32. [32] K.P. Panda, P.R. Bana, and G. Panda, 2020. A switched-capacitor self-balanced high-gain multilevel inverter employing a single DC source. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), pp.3192-3196. [DOI:10.1109/TCSII.2020.2975299]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)