1. [1] M. Trabelsi, H. Vahedi, and H. Abu-Rub, 2021. Review on single-DC-source multilevel inverters: Topologies, challenges, industrial applications, and recommendations. IEEE open journal of the Industrial Electronics Society, 2, pp.112-127. [
DOI:10.1109/OJIES.2021.3054666]
2. [2] Hosseinpour M, Seifi A. Design and Implementation of a New Switch-Diode based Single Source Multilevel Inverter Topology. Journal of Iranian Association of Electrical and Electronics Engineers 2022; 19 (4) :57-69 [
DOI:10.52547/jiaeee.19.4.57]
3. [3] A. Seifi, M. Hosseinpour, and , A. Dejamkhooy2021. A switch-source cell-based cascaded multilevel inverter topology with minimum number of power electronics components. Transactions of the Institute of Measurement and Control, 43(5), pp.1212-1225. [
DOI:10.1177/0142331220974137]
4. [4] M. Sarebanzadeh, M.A. Hosseinzadeh, C. Garcia, E. Babaei, M. Hosseinpour, A. Seifi, and J. Rodriguez, 2021. A 15-Level Switched-Capacitor Multilevel Inverter Structure With Self-Balancing Capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), pp.1477-1481. [
DOI:10.1109/TCSII.2021.3123115]
5. [5] Noori M, Hosseinpour M, Mousavi-Aghdam S R. Single Source Switched Capacitor Multilevel inverter with Voltage Boosting Capability and Low Switch Count. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :47-59 [
DOI:10.61186/jiaeee.21.2.47]
6. [6] P.R. Bana, K.P. Panda, R.T. Naayagi, P. Siano, and G. Panda, 2019. Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation. IEEE access, 7, pp.54888-54909. [
DOI:10.1109/ACCESS.2019.2913447]
7. [7] G.A. Saccol, J.C. Giacomini, A.L. Batschauer, and C. Rech, 2018. Comprehensive analysis of single-phase full-bridge asymmetrical flying capacitor inverters. IEEE Transactions on Industry Applications, 55(2), pp.1775-1786. [
DOI:10.1109/TIA.2018.2883549]
8. [8] M. Derakhshandeh, M. Hosseinpour, A. Seifi, and M. Shahparasti, 2024. An enhanced 13‐level triple voltage gain switched capacitor inverter with lower power electronics devices. IET Power Electronics. [
DOI:10.1049/pel2.12748]
9. [9] M. Hosseinpour, M. Noori, and M. Shahparasti, 2024. A 17-level octuple boost switched-capacitor inverter with lower voltage stress on devices. Scientific Reports, 14(1), p.14411. [
DOI:10.1038/s41598-024-65211-0]
10. [10] S. Islam, M.D. Siddique, A. Iqbal, S. Mekhilef, and M. Al-Hitmi, 2022. A Switched Capacitor-Based 13-Level Inverter with Reduced Switch Count. IEEE Transactions on Industry Applications, 58(6), pp.7373-7383. [
DOI:10.1109/TIA.2022.3191302]
11. [11] P.R. Bana, K.P. Panda, S. Padmanaban, and G. Panda, 2020. Extendable switched-capacitor multilevel inverter with reduced number of components and self-balancing capacitors. IEEE Transactions on Industry Applications, 57(3), pp.3154-3163 [
DOI:10.1109/TIA.2020.3018422]
12. [12] M.F. Talooki, M. Rezanejad, R. Khosravi, and E. Samadaei, 2020. A novel high step-up switched-capacitor multilevel inverter with self-voltage balancing. IEEE Transactions on Power Electronics, 36(4), pp.4352-4359. [
DOI:10.1109/TPEL.2020.3019223]
13. [13] N. Sandeep, 2020. A 13-level switched-capacitor-based boosting inverter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(3), pp.998-1002. [
DOI:10.1109/TCSII.2020.3017338]
14. [14] V. Anand, V. Singh, X. Guo, M.A.J. Sathik, Y.P. Siwakoti, S. Mekhilef, and F. Blaabjerg, 2023. Seventeen Level Switched Capacitor Inverters With the Capability of High Voltage Gain and Low Inrush Current. IEEE Journal of Emerging and Selected Topics in Industrial Electronics. [
DOI:10.1109/JESTIE.2023.3291996]
15. [15] H.K. Jahan, M. Abapour, and K. Zare, 2018. Switched-capacitor-based single-source cascaded H-bridge multilevel inverter featuring boosting ability. IEEE Transactions on Power Electronics, 34(2), pp.1113-1124. [
DOI:10.1109/TPEL.2018.2830401]
16. [16] M. Abapour, K. Zare, S.H. Hosseini, F. Blaabjerg, and Y. Yang, 2019. A multilevel inverter with minimized components featuring self-balancing and boosting capabilities for PV applications. IEEE Journal of Emerging and Selected Topics in Power Electronics.
17. [17] A.K. Singh, and R.K. Mandal, 2022. A Novel 17-level reduced component single DC switched-capacitor-based inverter with reduced input spike current. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(5), pp.6045-6056. [
DOI:10.1109/JESTPE.2022.3166222]
18. [18] A. Sheir, M.Z. Youssef, and M. Orabi, 2018. A novel bidirectional T-type multilevel inverter for electric vehicle applications. IEEE Transactions on Power Electronics, 34(7), pp.6648-6658. [
DOI:10.1109/TPEL.2018.2871624]
19. [19] B. P. McGrath and D. G. Holmes, "Multicarrier PWM strategies for multilevel inverters", IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 858-867, Aug. 2002. [
DOI:10.1109/TIE.2002.801073]
20. [20] H.R. Baghaee, A.K. Kaviani, M. Mirsalim, and G.B. Gharehpetian, 2012, February. Harmonic optimization in single DC source multi-level inverters using RBF neural networks. In 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC) (pp. 403-409). IEEE. [
DOI:10.1109/PEDSTC.2012.6183364]
21. [21] S. Du, J. Liu, and T. Liu, 2014. Modulation and closed-loop-based DC capacitor voltage control for MMC with fundamental switching frequency. IEEE Transactions on Power Electronics, 30(1), pp.327-338. [
DOI:10.1109/TPEL.2014.2301836]
22. [22] M.D. Siddique, B. Prathap Reddy, A. Iqbal, and S. Mekhilef, 2020. Reduced switch count‐based N‐level boost inverter topology for higher voltage gain. IET Power Electronics, 13(15), pp.3505-3509. [
DOI:10.1049/iet-pel.2020.0359]
23. [23] H. Shayeghi, A. Seifi, M. Hosseinpour, and N. Bizon, 2022. Developing a Generalized Multi-Level Inverter with Reduced Number of Power Electronics Components. Sustainability, 14(9), p.5545. [
DOI:10.3390/su14095545]
24. [24] A. Seifi, M. Hosseinpour, and S.H. Hosseini, 2023. A novel bidirectional modular multilevel inverter utilizing diode‐based bidirectional unit. International Journal of Circuit Theory and Applications. [
DOI:10.1002/cta.3582]
25. [25] P. Bhatnagar, A.K. Singh, K.K. Gupta, and Y.P. Siwakoti, 2021. A switched-capacitors-based 13-level inverter. IEEE Transactions on Power Electronics, 37(1), pp.644-658. [
DOI:10.1109/TPEL.2021.3098827]
26. [26] Y. Ye, S. Chen, T. Hua, M. Lin, and X. Wang, 2021. Self-balanced multilevel inverter with hybrid double-and half-mode switched capacitor. IEEE Transactions on Industrial Electronics, 69(6), pp.5735-5744. [
DOI:10.1109/TIE.2021.3086725]
27. [27] S. Majumdar, K.C. Jana, P.K. Pal, A. Sangwongwanich, and F. Blaabjerg, 2021. Design and implementation of a single-source 17-level inverter for a single-phase transformer-less grid-connected photovoltaic systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), pp.4469-4485. [
DOI:10.1109/JESTPE.2021.3133369]
28. [28] M.S.B. Arif, U. Mustafa, S.B.M. Ayob, J. Rodriguez, A. Nadeem, and M. Abdelrahem, 2021. Asymmetrical 17-level inverter topology with reduced total standing voltage and device count. IEEE Access, 9, pp.69710-69723. [
DOI:10.1109/ACCESS.2021.3077968]
29. [29] M.A. Hosseinzadeh, M. Sarebanzadeh, C.F. Garcia, E. Babaei, J. Rodriguez, and R. Kennel, 2022. Reduced multisource switched-capacitor multilevel inverter topologies. IEEE Transactions on Power Electronics, 37(12), pp.14647-14666. [
DOI:10.1109/TPEL.2022.3191013]
30. [30] K.P. Panda, P.R. Bana, O. Kiselychnyk, J. Wang, and G. Panda, 2021. A single-source switched-capacitor-based step-up multilevel inverter with reduced components. IEEE Transactions on Industry Applications, 57(4), pp.3801-3811. [
DOI:10.1109/TIA.2021.3068076]
31. [31] J. Sathik, D. Almakhles, and M.F. Elmorshedy, 2023. High Boost Seventeen Level Switched Capacitor Inverter Topology with Continuous Input Current. IEEE Journal of Emerging and Selected Topics in Power Electronics.
32. [32] K.P. Panda, P.R. Bana, and G. Panda, 2020. A switched-capacitor self-balanced high-gain multilevel inverter employing a single DC source. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), pp.3192-3196. [
DOI:10.1109/TCSII.2020.2975299]