1. [1] Taleb, F., Darbari, S., & Khelif, A. (2021). Reconfigurable locally resonant surface acoustic demultiplexing behavior in ZnO-based phononic crystal. Journal of Applied Physics, 129(2). [
DOI:10.1063/5.0024485]
2. [2] Khelif, A., Djafari-Rouhani, B., Vasseur, J. O., Deymier, P. A., Lambin, P., & Dobrzynski, L. (2002). Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Physical Review B, 65(17), 174308. [
DOI:10.1103/PhysRevB.65.174308]
3. [3] Khelif, A., Djafari-Rouhani, B., Vasseur, J. O., & Deymier, P. A. (2003). Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Physical Review B, 68(2), 024302. [
DOI:10.1103/PhysRevB.68.024302]
4. [4] Gharibi, H., & Bahrami, A. (2020). Phononic crystals for sensing FAMEs with demultiplexed frequencies. Journal of Molecular Liquids, 305, 112841. [
DOI:10.1016/j.molliq.2020.112841]
5. [5] Moradi, P., Gharibi, H., Fard, A. M., & Mehaney, A. (2021). Four-channel ultrasonic demultiplexer based on two-dimensional phononic crystal towards high efficient liquid sensor. Physica Scripta, 96(12), 125713. [
DOI:10.1088/1402-4896/ac2c23]
6. [6] Qiu, C., Liu, Z., Shi, J., & Chan, C. T. (2005). Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Applied Physics Letters, 86(22). [
DOI:10.1063/1.1942642]
7. [7] Bahrami, A., Alinejad-Naini, M., & Motaei, F. (2021). A proposal for 1× 4 phononic switch/demultiplexer using composite lattices. Solid State Communications, 326, 114179. [
DOI:10.1016/j.ssc.2020.114179]
8. [8] Shakeri, A., Darbari, S., & Moravvej-Farshi, M. K. (2019). Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal. Ultrasonics, 92, 8-12. [
DOI:10.1016/j.ultras.2018.09.001]
9. [9] Sigalas, M. M. (1992). Elastic and acoustic wave band structure. Journal of sound and vibration, 158(2), 377-382. [
DOI:10.1016/0022-460X(92)90059-7]
10. [10] Motaei, F., & Bahrami, A. (2020). Eight-channel acoustic demultiplexer based on solid-fluid phononic crystals with hollow cylinders. Photonics and Nanostructures-Fundamentals and Applications, 39, 100765. [
DOI:10.1016/j.photonics.2020.100765]
11. [11] Rostami-Dogolsara, B., Moravvej-Farshi, M. K., & Nazari, F. (2016). Designing switchable phononic crystal-based acoustic demultiplexer. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 63(9), 1468-1473. [
DOI:10.1109/TUFFC.2016.2586489]
12. [12] Rostami-Dogolsara, B., Moravvej-Farshi, M. K., & Nazari, F. (2019). Designing phononic crystal based tunable four-channel acoustic demultiplexer. Journal of Molecular Liquids, 281, 100-107. [
DOI:10.1016/j.molliq.2019.02.066]
13. [13] T. Fang, X. Sun 1, X. Wen, Y. Li 1, X. Liu 1, T. Song, Y. Song, Z. Liu, "High‑performance phononic crystal sensing structure for acetone solu tion concentration sensing," Scientific Reports, vol. 13, no. 1, p.7057, 2023. [
DOI:10.1038/s41598-023-34226-4]
14. ]14[ مریم ایمانی، کیازند فصیحی، "طراحی و شبیهسازی دیمالتیپلکسر صوتی 3×1 مبتنی بر کریستالهای فونونی ششضلعی با استفاده از کاواکهای رینگ رزوناتوری"، نشریه مهندسی برق و الکترونیک، جلد 21، شماره 3، مهر 1403.