دوره 22، شماره 2 - ( مجله مهندسی برق و الکترونیک ایران - جلد 22 شماره 2 1404 )                   جلد 22 شماره 2 صفحات 107-93 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fazaeli-Javan M, Monsefi R, Ghiasi-Shirazi K. Analyzing of Positive and Negative Prototypes based on the ±ED-WTA Method. Journal of Iranian Association of Electrical and Electronics Engineers 2025; 22 (2) :93-107
URL: http://jiaeee.com/article-1-1662-fa.html
فضائلی جوان مهسا، منصفی رضا، غیاثی شیرازی سید کمال الدین. تحلیل الگوهای مثبت و منفی در ED-WTA±. نشریه مهندسی برق و الکترونیک ایران. 1404; 22 (2) :93-107

URL: http://jiaeee.com/article-1-1662-fa.html


بخش مهندسی کامپیوتر- دانشکده مهندسی ـ دانشگاه فردوسی مشهدـ
چکیده:   (846 مشاهده)
روش ±ED-WTA یک روش جدید یادگیری مبتنی بر الگو برای شبکه­های عصبی مرسوم است که متناظر با هر نورون خروجی یک جفت الگوی مثبت و منفی به دست می‌آورد. الگوی مثبت، نمایان­گر نمونه­هایی است که نورون به درستی در مورد آن­ها تصمیم می­گیرد و الگوی منفی نماینده­ی نمونه­هایی است که نورون به اشتباه به ازای آن­ها برنده شده است. ±ED-WTA برای تفسیر عملکرد نورون در لایه­­ی بیشینه­ی نرم، اختلاف مربع فاصله­ی هر داده از الگوی مثبت و الگوی منفی را لحاظ می­کند. نکته­ی جالب توجه در این روش این است که در انتهای آموزش، الگوی مثبت و منفی هر نورون شباهت بسیار زیادی با یکدیگر پیدا می­کنند. در این مقاله، با تحلیل چگونگی تشکیل الگوها در روش ±ED-WTA، نشان داده می­شود، دلیل شباهت بسیار زیاد الگوهای مثبت و منفی، تأثیرگذاری آن‌ها بر یکدیگر از طریق داده‌های نزدیک به مرز کلاس‌ها می­باشد. همچنین با تعیین نمونه­های مؤثر در شکل­گیری الگوها، مشاهده می­شود، همان­طور که نمونه­های مرزی در طبقه­بند ماشین بردار پشتیبان مرز تصمیم­گیری را تعیین می­کنند، در شبکه­ی عصبی نیز نورون­های لایه­ی آخر بر اساس نمونه­های مرزی طبقه­بندی را انجام می­دهند. آزمایشات بر روی مجموعه دادگان MNIST، FERET و Fashion-MNIST درستی ادعاهای مطرح شده را نشان می­دهد.
متن کامل [PDF 2282 kb]   (150 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: کنترل
دریافت: 1402/8/11 | پذیرش: 1403/6/29 | انتشار: 1404/5/24

فهرست منابع
1. [1] Esmaeli H, Ghiasi-Shirazi K, Harati A. Online learning of positive and negative prototypes with explanations based on kernel expansion. Journal of Iranian Association of Electrical and Electronics Engineers 2023; 20 (1) :67-77 [DOI:10.52547/jiaeee.20.1.67]
2. [2] R. Zarei-Sabzevar, K. Ghiasi-Shirazi, and A. Harati, "Prototype-based interpretation of the functionality of neurons in winner-take-all neural networks", IEEE Transactions on Neural Networks and Learning Systems, 2022. [DOI:10.1109/TNNLS.2022.3155174]
3. [3] J. Snell, K. Swersky, and R. Zemel, "Prototypical networks for few-shot learning", Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017.
4. [4] O. Li, H. Liu, C. Chen, and C. Rudin, "Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions", In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1. 2018. [DOI:10.1609/aaai.v32i1.11771]
5. [5] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J.K. Su, "This looks like that: deep learning for interpretable image recognition", Advances in neural information processing systems 32, 2019.
6. [6] G. Chen, T. Zhang, J. Lu, and J. Zhou, "Deep meta metric learning", In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9547-9556. 2019. [DOI:10.1109/ICCV.2019.00964]
7. [7] V. Feldman, "Does learning require memorization? a short tale about a long tail", Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 2020. [DOI:10.1145/3357713.3384290]
8. [8] J. Bien, and R. Tibshirani, "Prototype selection for interpretable classification", The Annals of Applied Statistics: 2403-2424, 2011. [DOI:10.1214/11-AOAS495]
9. [9] S.Ö. Arik, and T. Pfister, "Protoattend: Attention-based prototypical learning", The Journal of Machine Learning Research, 21(1), pp.8691-8725, 2020.
10. [10] K. Chen, and C.G. Lee, "Incremental few-shot learning via vector quantization in deep embedded space", International Conference on Learning Representations. 2021.
11. [11] Q. Qian, L. Shang, B. Sun, J. Hu, H. Li, and R. Jin, "SoftTriple loss: Deep metric learning without triplet sampling", In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6450-6458. 2019. [DOI:10.1109/ICCV.2019.00655]
12. [12] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering", Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. [DOI:10.1109/CVPR.2015.7298682]
13. [13] C. Cortes, and V. Vapnik, "Support-vector networks", Machine learning 20.3, pp. 273-297, 1995. [DOI:10.1023/A:1022627411411]
14. [14] G. Brown, M. Bun, V. Feldman, A. Smith, and K. Talwar, "When is memorization of irrelevant training data necessary for high-accuracy learning?", Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 2021. [DOI:10.1145/3406325.3451131]
15. [15] V. Feldman, and C. Zhang, "What neural networks memorize and why: Discovering the long tail via influence estimation", Advances in Neural Information Processing Systems 33, pp. 2881-2891, 2020.
16. [16] M.E. Mavroforakis, and S. Theodoridis, "A geometric approach to support vector machine (SVM) classification", IEEE transactions on neural networks 17.3 pp. 671-682, 2006. [DOI:10.1109/TNN.2006.873281]
17. [17] C.K. Yeh, J. Kim, I.E.H. Yen, and P.K. Ravikumar, "Representer point selection for explaining deep neural networks", ,Advances in neural information processing systems 31, 2018.
18. [18] K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum, "Infinite mixture prototypes for few-shot learning", In International Conference on Machine Learning, pp. 232-241. PMLR, 2019.
19. [19] J. Chen, L.M. Zhan, X.M. Wu, and F.L. Chung, "Variational metric scaling for metric-based meta-learning", AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3478-3485, 2020 [DOI:10.1609/aaai.v34i04.5752]
20. [20] K. Crammer, and Y. Singer, "On the algorithmic implementation of multiclass kernel-based vector machines", Journal of machine learning research 2. Dec 265-292, 2001.
21. [21] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, "Online passive aggressive algorithms", Journal of Machine Learning Research, 2006.
22. [22] F. Aiolli, A. Sperduti, and Y. Singer, "Multiclass Classification with Multi-Prototype Support Vector Machines", Journal of Machine Learning Research 6.5 2005.
23. [23] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, "New support vector algorithms". Neural computation, 12(5), 1207-1245, 2000. [DOI:10.1162/089976600300015565]
24. [24] M.E. Tipping, "Sparse Bayesian learning and the relevance vector machine", Journal of machine learning research 1. 211-244. 2001.
25. [25] http://ocw.um.ac.ir/streams/course/view/163.html
26. [26] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi, "A theoretical analysis of contrastive unsupervised representation learning", In International Conference on Machine Learning, pp. 5628-5637. PMLR, 2019.
27. [27] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D.Krishnan, "Supervised contrastive learning", Advances in Neural Information Processing Systems 33 ,18661-18673, 2020.
28. [28] K. Ghiasi-Shirazi, "Competitive cross-entropy loss: A study on training single-layer neural networks for solving nonlinearly separable classification problems", Neural Processing Letters, vol. 50, no. 2, pp. 1115-1122, 2019. [DOI:10.1007/s11063-018-9906-5]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC 4.0) قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مهندسی برق و الکترونیک ایران می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb