Volume 21, Issue 2 (JIAEEE Vol.21 No.2 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(2): 87-95 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mortezaeei R, Hosseini Aliabadi M, Javadi S. Analytical Modeling of Magnetic Field Density Distribution in Different Regions of A Permanent Magnet Synchronous Motor through Subdomain Field Modeling Method. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (2) :87-95
URL: http://jiaeee.com/article-1-1618-en.html
Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract:   (802 Views)
In this article, an analytical method based on the subdomains method for modeling the magnetic field distribution in a permanent magnet synchronous motor based on the calculation of the scalar potential vector is presented. In this modeling, which is based on the sub-domain method, the motor magnetic field domain under study is divided into six sub-domains including the rotor shaft, rotor core, permanent magnets, air gap, stator core, and outer region. Maxwell's equations are solved within these subdomains with specific boundary conditions. The solution method is based on calculating the scalar potential vector and estimating the magnetic field density distribution in each subdomain, which is formulated by the Laplacian/pseudo-Poisson differential equations of the magnetic field in the polar coordinate system using the technique of separation of variables, Taylor series and Fourier series expansion. The proposed model can be used to estimate the distribution of magnetic fields in the areas of the machine to identify and diagnose mechanical and electrical errors or to estimate the speed and position in permanent magnet synchronous machines from the outside environment of the motor and also in the optimal design of electric machines.
 
Full-Text [PDF 1050 kb]   (98 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/07/28 | Accepted: 2023/09/25 | Published: 2024/06/24

References
1. [1] Z. Xing, X. Wang, W. Zhao, X. Li, L. Xiong, and X. Zhang, "Optimization Design of Interior Permanent Magnet Synchronous Motor with U-Shaped Rotor for Low-Level Torque Ripple and Electromagnetic Vibration", IEEE Transactions on Transportation Electrification, pp. 1-1, 2023, doi: 10.1109/TTE.2023.3288892. [DOI:10.1109/TTE.2023.3288892]
2. [2] G. Lei, J. Zhu, Y. Guo, C. Liu, and B. Ma, "A Review of Design Optimization Methods for Electrical Machines", Energies, vol. 10, no. 12, p. 1962, 2017, doi: https://doi.org/10.3390/en10121962 [DOI:10.3390/en10121962.]
3. [3] A. Shiri and S. D. Sadr, "Design Optimization and Construction of Double-Sided Linear Induction Motor", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 19, no. 4, pp. 185-193, 2022, doi: 10.52547/jiaeee.19.4.185. [DOI:10.52547/jiaeee.19.4.185]
4. [4] m. d. kheiri and a. tavakoli, "Adaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 19, no. 4, pp. 105-116, 2022, doi: 10.52547/jiaeee.19.4.105. [DOI:10.52547/jiaeee.19.4.105]
5. [5] C. Lee and I. G. Jang, "Topology Optimization of the IPMSMs Considering Both the MTPA and FW Controls Under the Voltage and Current Limitations", IEEE Transactions on Industrial Electronics, vol. 70, no. 8, pp. 8244-8253, 2023, doi: 10.1109/TIE.2023.3234136. [DOI:10.1109/TIE.2023.3234136]
6. [6] G. Lei, T. Wang, J. Zhu, Y. Guo, and S. Wang, "System-Level Design Optimization Method for Electrical Drive Systems-Robust Approach", IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4702-4713, 2015, doi: 10.1109/TIE.2015.2404305. [DOI:10.1109/TIE.2015.2404305]
7. [7] M. A. Khan, I. Husain, M. R. Islam, and J. T. Klass, "Design of Experiments to Address Manufacturing Tolerances and Process Variations Influencing Cogging Torque and Back EMF in the Mass Production of the Permanent-Magnet Synchronous Motors", IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 346-355, 2014, doi: 10.1109/TIA.2013.2271473. [DOI:10.1109/TIA.2013.2271473]
8. [8] S. Li, W. Tong, S. Wu, and R. Tang, "Analytical Model for Electromagnetic Performance Prediction of IPM Motors Considering Different Rotor Topologies", IEEE Transactions on Industry Applications, pp. 1-10, 2023, doi: 10.1109/TIA.2023.3268639. [DOI:10.1109/TIA.2023.3268639]
9. [9] B. Guo, Z. Djelloul-Khedda, and F. Dubas, "Nonlinear Analytical Solution in Axial Flux Permanent Magnet Machines using Scalar Potential", IEEE Transactions on Industrial Electronics, pp. 1-10, 2023, doi: 10.1109/TIE.2023.3273247. [DOI:10.1109/TIE.2023.3273247]
10. [10] C. Shi, L. Peng, Z. Zhang, and T. Shi, "Analytical Modeling and Analysis of Permanent-Magnet Motor with Demagnetization Fault", Sensors, vol. 22, no. 23, p. 9440, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/23/9440. [DOI:10.3390/s22239440] [PMID] []
11. [11] F. Rezaee-Alam, M. Hosseini, and B. Rezaeealam, "A new hybrid analytical model for electromagnetic analysis of wound rotor induction motors", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 6, p. e3022, 2022, doi: https://doi.org/10.1002/jnm.3022 [DOI:10.1002/jnm.3022.]
12. [12] Z. Li, X. Huang, Y. Yu, D. Jiang, L. Wu, and T. Shi, "Nonlinear Analytical Modelling for Surface-Mounted Permanent Magnet Motors with Magnet Defect Fault", IEEE Transactions on Energy Conversion, pp. 1-1, 2022, doi: 10.1109/TEC.2022.3145637. [DOI:10.1109/TEC.2022.3145637]
13. [13] Z. Djelloul Khedda, K. Boughrara, F. Dubas, B. Guo, and E. H. Ailam, "Two-dimensional steady-state thermal analytical model of permanent-magnet synchronous machines operating in generator mode", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 41, no. 1, pp. 125-154, 2022, doi: 10.1108/COMPEL-07-2021-0226. [DOI:10.1108/COMPEL-07-2021-0226]
14. [14] A. Abbas and A. Iqbal, "A subdomain model for armature reaction field and open-circuit field prediction in consequent pole permanent magnet machines", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 6, p. e3023, 2022, doi: https://doi.org/10.1002/jnm.3023 [DOI:10.1002/jnm.3023.]
15. [15] M. Zhu, L. Wu, D. Wang, Y. Fang, and P. Tan, "Analytical prediction of electromagnetic performance of dual-stator consequent-pole PM machines based on subdomain model accounting for tooth-tips", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 40, no. 3, pp. 289-308, 2021, doi: 10.1108/COMPEL-01-2020-0063. [DOI:10.1108/COMPEL-01-2020-0063]
16. [16] W. Ullah, F. Khan, E. Sulaiman, I. Sami, and J. S. Ro, "Analytical Sub-Domain Model for Magnetic Field Computation in Segmented Permanent Magnet Switched Flux Consequent Pole Machine", IEEE Access, vol. 9, pp. 3774-3783, 2021, doi: 10.1109/ACCESS.2020.3047742. [DOI:10.1109/ACCESS.2020.3047742]
17. [17] C. Tang, M. Shen, Y. Fang, and P. D. Pfister, "Comparison of Subdomain, Complex Permeance, and Relative Permeance Models for a Wide Family of Permanent-Magnet Machines", IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, 2021, doi: 10.1109/TMAG.2020.3009416. [DOI:10.1109/TMAG.2020.3009416]
18. [18] A. Jabbari and F. Dubas, "Analytical Modelling of Magnetic Field Distribution in Spoke Type Permanent Magnet Machines", (in eng), Journal of Iranian Association of Electrical and Electronics Engineers, Research vol. 17, no. 3, pp. 141-151, 2020. [Online]. Available: http://jiaeee.com/article-1-423-fa.html.
19. [19] T. Lubin, S. Mezani, and A. Rezzoug, "Exact Analytical Method for Magnetic Field Computation in the Air Gap of Cylindrical Electrical Machines Considering Slotting Effects", IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1092-1099, 2010, doi: 10.1109/TMAG.2009.2036257. [DOI:10.1109/TMAG.2009.2036257]
20. [20] J. Fu and C. Zhu, "Subdomain Model for Predicting Magnetic Field in Slotted Surface Mounted Permanent-Magnet Machines With Rotor Eccentricity", IEEE Transactions on Magnetics, vol. 48, no. 5, pp. 1906-1917, 2012, doi: 10.1109/TMAG.2011.2178250. [DOI:10.1109/TMAG.2011.2178250]
21. [21] V. Z. Faradonbeh, A. Rahideh, M. M. Ghahfarokhi, E. Amiri, A. D. Aliabad, and G. A. Markadeh, "Analytical Modeling of Slotted, Surface-Mounted Permanent Magnet Synchronous Motors With Different Rotor Frames and Magnet Shapes", IEEE Transactions on Magnetics, vol. 57, no. 1, pp. 1-13, 2021, doi: 10.1109/TMAG.2020.3032648. [DOI:10.1109/TMAG.2020.3032648]
22. [22] Z. Q. Zhu, L. J. Wu, and Z. P. Xia, "An Accurate Subdomain Model for Magnetic Field Computation in Slotted Surface-Mounted Permanent-Magnet Machines", IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1100-1115, 2010, doi: 10.1109/TMAG.2009.2038153. [DOI:10.1109/TMAG.2009.2038153]
23. [23] W. Xinghua, L. Qingfu, W. Shuhong, and L. Qunfeng, "Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brushless DC motors", IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 424-432, 2003, doi: 10.1109/TEC.2003.815852. [DOI:10.1109/TEC.2003.815852]
24. [24] L. J. Wu, Z. Q. Zhu, D. Staton, M. Popescu, and D. Hawkins, "Subdomain Model for Predicting Armature Reaction Field of Surface-Mounted Permanent-Magnet Machines Accounting for Tooth-Tips", IEEE Transactions on Magnetics, vol. 47, no. 4, pp. 812-822, 2011, doi: 10.1109/TMAG.2011.2104969. [DOI:10.1109/TMAG.2011.2104969]
25. [25] A. Rahideh and T. Korakianitis, "Analytical Open-Circuit Magnetic Field Distribution of Slotless Brushless Permanent-Magnet Machines With Rotor Eccentricity", IEEE Transactions on Magnetics, vol. 47, no. 12, pp. 4791-4808, 2011, doi: 10.1109/TMAG.2011.2159987. [DOI:10.1109/TMAG.2011.2159987]
26. [26] P. Kumar and P. Bauer, "Improved analytical model of a permanent-magnet brushless DC motor", IEEE Transactions on Magnetics, vol. 44, no. 10, pp. 2299-2309, 2008. [DOI:10.1109/TMAG.2008.2001450]
27. [27] S. R. Mortezaei, M. H. Aliabadi, and S. Javadi, "Analytical calculation and finite element evaluation of electromagnetic leakage field distribution in surface-mounted permanent magnet synchronous motors taking the rotor eccentricity effect into account", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. ahead-of-print, no. ahead-of-print, 2021, doi: 10.1108/COMPEL-05-2021-0171. [DOI:10.1108/COMPEL-05-2021-0171]
28. [28] r. mortezaeei, M. Hosseini Aliabadi, and S. Javadi, "The effect of geometrical parameters and materials on the distribution of magnetic field density in a permanent magnet synchronous motor through analytical modeling", Iranian journal of Marine technology, pp. -, 2023, doi: 10.22034/ijmt.2023.544047.1805.
29. [29] M. Rostami, P. Naderi, and A. Shiri, "Modelling and analysis of permanent magnet vernier machine using flexible magnetic equivalent circuit method", IET Science, Measurement & Technology, vol. 16, no. 3, pp. 160-170, 2022. [DOI:10.1049/smt2.12094]
30. [30] M. Rostami, P. Naderi, and A. Shiri, "Intern-turn fault modeling and diagnosis in permanent magnet vernier machine using modified magnetic equivalent circuit method", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 41, no. 1, pp. 410-426, 2022, doi: 10.1108/COMPEL-06-2021-0201. [DOI:10.1108/COMPEL-06-2021-0201]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2024 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb