Volume 21, Issue 4 (JIAEEE Vol.21 No.4 2024)                   Journal of Iranian Association of Electrical and Electronics Engineers 2024, 21(4): 61-75 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shaker M H, Farzin H, Mashhour E. A multiobjective framework for simultaneous placement of electric vehicle battery swapping and charging stations in centralized charging mode. Journal of Iranian Association of Electrical and Electronics Engineers 2024; 21 (4) :61-75
URL: http://jiaeee.com/article-1-1563-en.html
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract:   (1067 Views)
The purpose of this paper is to introduce a framework for the simultaneous optimal placement of battery charging and swapping stations for electric vehicles in centralized charging mode. In the centralized charging mode, unlike the decentralized mode, the charging equipment is located in a place other than the battery swapping station, which is called the central charging station. The batteries are charged in this place and are distributed among the battery swapping stations on a regular basis. The objective functions of the presented model include minimization of the batteries transportation cost, improving the voltage index, and reducing the cost of distribution grid losses. For this purpose, a nonlinear multi-objective model is presented to calculate the objective function values of the problem. Non-dominated sorting genetic algorithm (NSGA-II) is used to solve the optimization problem in this article. The output of the genetic algorithm is a set of pareto optimal points, from which the final solution is selected using fuzzy decision-making method. Finally, the model is implemented on the 69-bus IEEE test system, and the results have been examined in different scenarios. The obtained results verify the efficiency of the presented model.
Full-Text [PDF 1559 kb]   (346 Downloads)    
Type of Article: Research | Subject: Power
Received: 2023/01/31 | Accepted: 2023/07/10 | Published: 2025/01/11

References
1. [1] J. Buberger, A. Kersten, M. Kuder, R. Eckerle, T. Weyh, and T. Thiringer, "Total CO2-equivalent life-cycle emissions from commercially available passenger cars", Renewable and Sustainable Energy Reviews, vol. 159, p. 112158, 2022. [DOI:10.1016/j.rser.2022.112158]
2. [2] L. Gustavsson, T. Nguyen, R. Sathre, and U. Y. A. Tettey, "Climate effects of forestry and substitution of concrete buildings and fossil energy", Renewable and Sustainable Energy Reviews, vol. 136, p. 110435, 2021. [DOI:10.1016/j.rser.2020.110435]
3. [3] S. Hemavathi and A. Shinisha, "A study on trends and developments in electric vehicle charging technologies", Journal of Energy Storage, vol. 52, p. 105013, 2022. [DOI:10.1016/j.est.2022.105013]
4. [4] O. Sadeghian, A. Oshnoei, B. Mohammadi-Ivatloo, V. Vahidinasab, and A. Anvari-Moghaddam, "A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges", Journal of Energy Storage, vol. 54, p. 105241, 2022. [DOI:10.1016/j.est.2022.105241]
5. [5] N. Ding, K. Prasad, and T. Lie, "The electric vehicle: a review", International Journal of Electric and Hybrid Vehicles, vol. 9, no. 1, pp. 49-66, 2017. [DOI:10.1504/IJEHV.2017.082816]
6. [6] K. Koirala and M. Tamang, "Planning and establishment of battery swapping station-A support for faster electric vehicle adoption", Journal of Energy Storage, vol. 51, p. 104351, 2022. [DOI:10.1016/j.est.2022.104351]
7. [7] M. Khalid, F. Ahmad, B. K. Panigrahi, and L. Al-Fagih, "A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery", Journal of Energy Storage, vol. 53, p. 105084, 2022. [DOI:10.1016/j.est.2022.105084]
8. [8] X. Yang, C. Shao, C. Zhuge, M. Sun, P. Wang, and S. Wang, "Deploying battery swap stations for shared electric vehicles using trajectory data", Transportation Research Part D: Transport and Environment, vol. 97, p. 102943, 2021. [DOI:10.1016/j.trd.2021.102943]
9. [9] S. R. Revankar and V. N. Kalkhambkar, "Grid integration of battery swapping station: A review", Journal of Energy Storage, vol. 41, p. 102937, 2021. [DOI:10.1016/j.est.2021.102937]
10. [10] H. Farzin, "Reliability cost/worth assessment of emergency B2G services in two modes of battery swap technology", Sustainable Energy, Grids and Networks, vol. 31, p. 100787, 2022. [DOI:10.1016/j.segan.2022.100787]
11. [11] W. Li, Y. Li, H. Deng, and L. Bao, "Planning of electric public transport system under battery swap mode", Sustainability, vol. 10, no. 7, p. 2528, 2018. [DOI:10.3390/su10072528]
12. [12] C. Li, N. Wang, W. Li, Q. Yi, and D. Qi, "A battery centralized scheduling strategy for battery swapping of electric vehicles", Journal of Energy Storage, vol. 51, p. 104327, 2022. [DOI:10.1016/j.est.2022.104327]
13. [13] S. Wang, L. Yu, L. Wu, Y. Dong, and H. Wang, "An improved differential evolution algorithm for optimal location of battery swapping stations considering multi-type electric vehicle scale evolution", IEEE Access, vol. 7, pp. 73020-73035, 2019. [DOI:10.1109/ACCESS.2019.2919507]
14. [14] M. Zeng, Y. Pan, D. Zhang, Z. Lu, and Y. Li, "Data-driven location selection for battery swapping stations", IEEE Access, vol. 7, pp. 133760-133771, 2019. [DOI:10.1109/ACCESS.2019.2941901]
15. [15] R. A. G. Rendón, R. A. H. Isaza, and F. A. O. Cruz, "Optimal location of battery swap stations for electric vehicles", Scientia et technica, vol. 24, no. 3, pp. 377-384, 2019. [DOI:10.22517/23447214.21481]
16. [16] U. Sultana, A. B. Khairuddin, B. Sultana, N. Rasheed, S. H. Qazi, and N. R. Malik, "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm", Energy, vol. 165, pp. 408-421, 2018. [DOI:10.1016/j.energy.2018.09.083]
17. [17] H. Wu, G. K. H. Pang, K. L. Choy, and H. Y. Lam, "An optimization model for electric vehicle battery charging at a battery swapping station", IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 881-895, 2017. [DOI:10.1109/TVT.2017.2758404]
18. [18] L. Ni, B. Sun, X. Tan, and D. H. Tsang, "Inventory Planning and Real-time Routing for Network of Electric Vehicle Battery Swapping Stations", IEEE Transactions on Transportation Electrification, 2020. [DOI:10.1109/TTE.2020.3015290]
19. [19] Y. Zheng, Z. Y. Dong, Y. Xu, K. Meng, J. H. Zhao, and J. Qiu, "Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning", IEEE transactions on Power Systems, vol. 29, no. 1, pp. 221-229, 2013. [DOI:10.1109/TPWRS.2013.2278852]
20. [20] A. R. Jordehi, M. S. Javadi, and J. P. Catalão, "Optimal placement of battery swap stations in microgrids with micro pumped hydro storage systems, photovoltaic, wind and geothermal distributed generators", International Journal of Electrical Power & Energy Systems, vol. 125, p. 106483, 2021. [DOI:10.1016/j.ijepes.2020.106483]
21. [21] M. Ban, D. Guo, J. Yu, and M. Shahidehpour, "Optimal sizing of PV and battery-based energy storage in an off-grid nanogrid supplying batteries to a battery swapping station", Journal of Modern Power Systems and Clean Energy, vol. 7, no. 2, pp. 309-320, 2019. [DOI:10.1007/s40565-018-0428-y]
22. [22] J. Feng, S. Hou, L. Yu, N. Dimov, P. Zheng, and C. Wang, "Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging", Applied Energy, vol. 264, p. 114708, 2020. [DOI:10.1016/j.apenergy.2020.114708]
23. [23] P. You et al., "Scheduling of EV battery swapping-Part I: Centralized solution", IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1887-1897, 2017. [DOI:10.1109/TCNS.2017.2773025]
24. [24] H.-M. Chung, W.-T. Li, C. Yuen, C.-K. Wen, and N. Crespi, "Electric vehicle charge scheduling mechanism to maximize cost efficiency and user convenience", IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3020-3030, 2018. [DOI:10.1109/TSG.2018.2817067]
25. [25] W. Tushar, C. Yuen, S. Huang, D. B. Smith, and H. V. Poor, "Cost minimization of charging stations with photovoltaics: An approach with EV classification", IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 1, pp. 156-169, 2015. [DOI:10.1109/TITS.2015.2462824]
26. [26] X. Wang, C. Yuen, N. U. Hassan, N. An, and W. Wu, "Electric vehicle charging station placement for urban public bus systems", IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 1, pp. 128-139, 2016. [DOI:10.1109/TITS.2016.2563166]
27. [27] M. H. Shaker, H. Farzin, and E. Mashhour, "Joint planning of electric vehicle battery swapping stations and distribution grid with centralized charging", Journal of Energy Storage, vol. 58, p. 106455, 2023. [DOI:10.1016/j.est.2022.106455]
28. [28] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications", ieee transactions on sustainable energy, vol. 7, no. 4, pp. 1730-1738, 2016. [DOI:10.1109/TSTE.2016.2558500]
29. [29] H. Farzin, M. Moeini-Aghtaie, and M. Fotuhi-Firuzabad, "Reliability studies of distribution systems integrated with electric vehicles under battery-exchange mode", IEEE Transactions on Power Delivery, vol. 31, no. 6, pp. 2473-2482, 2015. [DOI:10.1109/TPWRD.2015.2497219]
30. [30] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids", IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 117-127, 2016. [DOI:10.1109/TSG.2016.2598678]
31. [31] J. Savier and D. Das, "Impact of network reconfiguration on loss allocation of radial distribution systems", IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2473-2480, 2007. [DOI:10.1109/TPWRD.2007.905370]
32. [32] رزمی، هادی. دعاگوی مجرد، حسن. نیکنام، طاهر. "بهره‌برداری بهینه‌ی احتمالاتی از نیروگاه‌های ترکیبی تولید برق و حرارت، بادی و خورشیدی"، نشریه مهندسی برق و الکترونیک ایران. ۱۴۰۱; ۱۹ (۱) :۱۴۹-۱۶۰.
33. [33] ورشوساز، فرشید. معظمی، مجید. فانی، بهادر. "برنامه‌ریزی و تخمین تصادفی ظرفیت یک ایستگاه شارژ خودروهای الکتریکی با سقف‌ خورشیدی با استفاده از نظریه صف‌ و جنگل تصادفی"، نشریه مهندسی برق و الکترونیک ایران. ۱۳۹۸; 16 (1) : 31-39.
34. [34] M. Bahrami, M. Vakilian, H. Farzin, and M. Lehtonen, "A CVaR-based stochastic framework for storm-resilient grid, including bus charging stations", Sustainable Energy, Grids and Networks, p. 101082, 2023. [DOI:10.1016/j.segan.2023.101082]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This Journal is an open access Journal Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY NC 4.0)

© 2025 CC BY-NC 4.0 | Journal of Iranian Association of Electrical and Electronics Engineers

Designed & Developed by : Yektaweb